Shape From Texture

L'J



Recover surface orientation or surface shape from
Image texture:

o Assume texture ‘looks the same’ at different points
on the surface.

e This means that the deformation of the texture is
due to the surface curvature. !
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Structural Shape Recovery

i

resides on the surface and has
e Perspective projection
e Paraperspective projection
e Orthographic projection

55 no thickness.
Sy —> Computation under:
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Reminder: Perspective Projection
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Perspective Distortion

Center of FF:ontar
Projection Image lane
Scaling £J Plane
of the
Frontal Plane
in the Image [

Foreshortening
of the
Longitudinal Plane

in the Image

Longitudinal Plane

The perspective projection distortion of the texture
e depends on both depth and surface orientation,
e |s anisotropic.

PFL A
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Foreshortening

Depth vs Orientation:
o Infinitesimal vector [AX,Ay,Az] at location [x,y,z]l-I-l

image of this vector is .--:.

Liax XAz Ay -2 A
Z Z Z
e Two special cases:
* Az=0 The object is scaled
* AX=Ay=0 : The object is foreshortened
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Reminder: Orthographic Projection
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Special case of perspective projection:

e Large f

e Objects close to the optical axis
—>Parallel lines mapped into parallel lines.
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Orthographic Projection

/ Object
Scating I (e

B L 2 o e ’ iy \ 5

il TP TR I T ET Ty EUSCIEL) '

Orthographic

Center of A‘Qe / grap

iacti Projection
Projection

:
§ i
#

Y TIXY

fe PO e H)H
A 2 X £ AR BE

Ml
1
"N
r



Tilt And Slant
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Orthographic Projection

e Tilt: Derived from the

//L T image direction in which

?& . i““""“l:‘ﬁi,[ | the surface element

N undergoes maximum
compression.

Do e 25 . N St o,-cos bl .
5/ e Slant: Derived from the
/ extent of this compression.
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Perpendicular Lines
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Orthographic projections of squares that
are rotated with respect to each other in a
plane inclined at w=60° to the image plane.

1p1/1; X P/ 15| cos(w)

Ipi/L 117 + [Ip2/L]I7 1+ cos?(w)

Ikeuchi. A’84 A
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Parapespective Projection
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Generalization of the orthographic projection:

e Object dimensions small wrt distance to the
center of projection.

- Parallel projection followed by scaling
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Parapespective Projection

(Xo+ AXpa Yot AY¥s, Za+AZ)

Parallel Projection in
—[X, ¥« Zo) Direction »(
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f 2 / / True Area.
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Parapespective Projection
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% i3iiiiii e Image regions being brighter or

s 22313y darker than their surroundings.

:. i e Assumed to have the same area
 +r2.e%% e« inspace.

o> Given enough texels, it
' becomes possible to estimate
the normal.
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Texture Gradient




Statistical Shape Recovery

Mesure texture density as opposed to
" texel area, that is, the number of textural
primitives per unit surface.

// " \‘
o o

Unknown surface normal. -_ VN
b=[b,...,b,

] Image coordinates.

@Dn Function of density.
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Strengths and Limitations (2015)

Strengths:
Emulates an |mport%@$fuman ability.

Limitations: \’}&O

Involves very@:rong assumptions.
Only useful in very specific settings.




Machine Learning
| M

—pr=|_Train a regressor to predict depth —> Noisy predictions A




Markov Random Field (MRF)

Graph with vertices and edges

Assign values to the nodes to minimize
E(Y)= 200+ X v ()

(1,))

unary pairwise

cpry —> Enforces consistency




Deep Learning with MRF

Supperpixel Shared network

Predicted depth map y

o ———————————————————
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Liu et al., PAMI 2016




Enforcing Task Congist;tency
ep

Normals

e A network can be trained to predict multiple things.
e Forcing consistency across tasks increases robustness. !

=Pr-L Zamir et al. , CVPR’20




A Very Diverse Training Database Helps




.. and so does a Transformer Architecture

Originalimages  Selected input patches - Masked targets

RGB

Transformer
encoder

Depth
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Semantic

=PrL Ranftl et al, ICCV21 A




Using Transformers

MiDaS (MIX 6) DPT-Hybrid

e Pros: Good at modeling long range relationships.

e Cons: Flattening the patches looses some amount of information.
=PFL Ranftl et al., CVPR’21 A




Optional: lllusory Shape Distorsion
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People seem to be sensitive to orientation fields
in the cases of both texture and shading.

Flemming et al. PNAS’10 A
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Optional: Shape from Smear

Hypothesis: If orientation and scale fields are the key
source of information for 3D shape perception, it should be
possible to induce a vivid sense of 3D shape by creating 2D
patterns with appropriate scale and orientation fields.

Test: Use a technique known as Line Integral Convolution to
smear the texture along specific orientations and scale
appropriately.

Flemming et al. PNAS’10 A




Optional: Scaling and Smearing

Scaling:

Smearing:
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Optional: Inconsistent Stimulus

The orientation field cannot be integrated
> No depth perception.

> Do we integrate in our heads?

> [s this what the deep nets learn to do?
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Strengths and Limitations

Strengths:
Emulates an important human ability.

Limitations:
Requires regular texture.
Involves very strong assumptions.
Deep learning can be used to weaken them.
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