Deep Learning Crash Course

—

32x14x 14 64 x 14 x 14
32x28x28

Convolution Convolution 3136 x 128
padding = 1, padding = 1, Max pooling

kernel = 3x3, Max pooling kemel = 3x3, Kemel=2x2,  Fyatten

stride = 1 Kemel = 2x2, stride = 1 Stride = 2
o +
+ Stride = 2
RelU RelU

e Single Layer Perceptrons
e Multiple Layer Perceptrons
e Convolutional Neural Nets
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Binary vs Multi-Class Classification
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Linear Binary Classification
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. 05 o 05 " Decision boundary

Two classes shown as different colors:

e Thelabelye {-1,1} orye {0,1}.

e The samples with label 1 are called positive samples.

e The samples with label -1 or 0 are called negative samples.
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Signed Distance

h=0: Point 1s on the line.
‘. X = [1,x;, x,] h>0: Point in the normal’s direction.
3 h<0: Point in the other direction.

n= [Wl’ W2]

W = [wy, wy, w,] With W12 + w22 =1

>

Notation: X =[x, X,]

i — [laxlaxZ]

Signed distance:  h = wy + wix; + Wy,

W - X ﬂ
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Signed Distance in 3D
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Signed Distance in N Dimensions

h=0: Point is on the decision boundary.
h>0: Point on one side.
h<0: Point on the other side.

QX =1[1lx,...,xyv]
p 1 N

w=I[w,...w]

N
W = [WO’WI’ ,Wn] with Zwlz =1
i=1

>

Notation: X = [x,...,x,]
X=[1lx,....x,]

~ ~

Hyperplane: xeR", 0=w-X
= Wy + WXy + .. W, X,

Signed distance: h=w-X A
PrL
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Binary Classification in N Dimensions

Hyperplane: x € RN, W . X =0, withx =[1]x].

Signed distance: W - X, with w = [w,|w] and | |w]|]| = 1.

Problem statement: Find w such that
o for all or most positive samples w - X > 0,

« for all or most negative samples w - X < 0.

Ml
1
"N
r



Logistic Regression

T e y(X; W) = 6(W - X)
1

1 + exp(—w - X)

0

c(a)

Weight (Ibs.)

100

20
50 5 60 @ 70 7S -y

Height (in.)

Given a training set {(X,,7,);<,<y} minimize

=) (t,Iny(x,) + (1 — ,)In(1 = y(x,)

with respect to w.

 When the noise is Gaussian, this is the maximum likelihood solution.

P'-L. y(X; W) can be interpreted at the probability that x belongs to positive class.
= A
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Multi-Class Logistic Regression

Y1

YK

arg maxy,;
J

« K linear classifiers of the form yk(x) = J(WZX).

« Assign x to class k if y*(x) > y/(x)VI # k.

e Because the sigmoid function
1S monotonic, the formulation
1s almost unchanged.

 Only the objective function
being minimized need to be
reformulated.

Bishop, Chapter 4.3.4 A




Non Separable ODitribution
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Positive: 100(zy — 27)* + (1 —x1)? < 0.5 y(x; W) must be a non-linear function.
Negative: Otherwise

* Logistic regression can handle a few outliers but not a complex non-
linear boundary.

« How can we learn a function y such that y(x; w) 1s close to 1 for
positive samples and close to 0 or -1 for negative ones?

PEL —> Use LOTS of hyperplanes. A
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Reformulating Logistic Regression

O y(X) = o(W - X + b)
) —’C! | . X = [xl, Xoy oo, xn] !

T
W = [Wl,Wz, ,Wn]

Hinge Loss




Repeating the Process

hl = G(Wl ‘X'I‘bl)

T
W = [Wlla Wi2, W13, W14]

h2 —_ O'(Wz'X‘l‘bz)

T
W, = [WZI’ Woo, Wo3, W24]

T
Wg = [WHlv Wros Wh3s WH4]
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Repeating the Process

h=0c(Wx+Db),

with W =

and b =




Multi-Layer Perceptron

4

hidden laye

input layer
z ‘ output layer

The process can be repeated several times to create a vector h.
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Multi-Layer Perceptron

hidden layer

input layer _,-,-"'
ey !{?//.\ output layer
-

AN
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The process can be repeated several times to create a vector h.
It can then be done again to produce an output vy.

—> This output is a differentiable function of the weights.
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RelU

hidden layer

input layer Z
= - ! §\ utp

Z .\\l\xre

=

ol
\ - &
S ‘\,‘:' 3
C

h = 0'1(W1X—|—b1)
y = o03(W2sh+ by)

o(x) = max(0,x)

Each node defines a hyperplane.
The resulting function is piecewise linear affine and continuous.
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Sigmoid and Tanh

hidden layer

input layer =~
— LA output layer

' -~
—
—

R h = O'(WlX + bl)
S ‘\ y = O'(Wgh—l—bg)
/ | s o) =g +e><1p(—£v)
/ A tanh: o(x) = ziigg —T—Eigg:g

Each node defines a hyperplane.
The resulting function is continuously differentiable.
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o(W;x + b))
o(w>h + b,)

Binary Case
h
Y

In this case w> is vector.

hidden
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RelLu Behavior

h = ReLu(W;x)

y = wa h + by .




Binary Case

o Let the training set be {(X,, ) <,<n} Where ¢, € {0,1} is the class
label and let us consider a neural net with a 1D output.

« We write
y, = 6(W,(c(Wx, +b;))+b,) €[0,1].

 We want to minimize the binary cross entropy

1 N
E(Wl’ Wz, bl’ b2) — N Z En(Wl’ W29 bla b2) ’
n=1

En(wla W29 b19 b2) — (tn ln(yn) + (1 _ tn)ln(l _ yn)) ’
with respect to the coefficients of W1, wa, by, and bo.

* E can be minimized using a gradient-based technique.

PrL A
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Binary Case

Given a training set {x,,t,}1<n<n where t,, € {0, 1}, minimize
.
E(W.b)=——S "E (W.b
W)=~ Y Wb

En(W7 b) = 1n log(yn) + (1 o tn) log(l - yn) y

Yn — f(Xn)
O'(WQ(O'(Wlxn -+ bl)) —+ bz),

Since E is a differentiable function of W and b, this can be
done using a gradient-based technique.
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One Single Hyperplane

y = max(w'x +b,0) roA
y =10 “%
L1
k/Q
< 4.5
< y=w x+b
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Two Hyperplanes

. WT bl
h = max(Wx + b, 0) with W = W%p and b =

y=wTh+¥ x2A




Three Hyperplanes

{ h = max(Wx + b, 0) A

y:W/Th 'CEQ

with dim(h) = 3




Multi-Class Case

z ] output layer

L7 h = G(Wlxn + bl)
J ' y = o(W,h + b,)

In this case W> is a matrix.
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Multi-Class Case

Let the training set be {(X,, [£,, .., IX]); <<y} Where t* € {0,1} is the
probability that sample x,, belongs to class k.
* We write

y,=oc(W,(c(Wx,+b)+Db, € RE
k_ exp(y,[k])
Y2 exp(y,li])

P

* We minimize the cross entropy

1 N
E(W,, Wy, by, by) = — Y E(W.W,.b..b,),

n=1

E, (Wi, Wy, by, by) = — Z ty In(p,) ,

=pEL with respect to the coefficients of Wi, W2, b1, and bs.



Non-Linear Binary Classificatio

—20 5 i o o' % @ PR o .
o o0 o L4 1Y . e ¢ e g Y e (]
') L] o LI o® % oo
1.5 ‘leee S 0 ® o * e, %, " 3 *
=159 o o - . o8 o © '. e %o
o ° , o . ° .
‘.‘...‘. ’ o Po ] L) :.... ..‘ .s.. Py ;.‘.:: °
. S, - L e 0 H
-1.0 - . o3 . .~. s o... - ° %, . :° lo' _:
b e DS L " . . o ,° oo
f..o. Qe © . . . [ 4 . ° 0
e 8 ° . ° * 2 ° . S e o:
—0.5 7 o e * . ® s LA Go®
e . * . ° o ® ° N L
P .... ¢ o? o‘ ° .:.o..o o ). .\: L ° )
e .:. ° L ] *.. ° e®e .. ° ..
001 eee3’, Sae teel ooy, AR
° ot o' ©e : o :o. y ‘.. had PY o .. '
=) N «» : P ® 0.:.. o ® o 0ese
_ . ° o e ee%,
0.5 L . :.\o. o2 © .. ® . :0 :.. - oo . ¢ . ° ) . L
. % ° . : S.. ° * oo ] N
10_0.0.:’ o °V'. .‘ ‘. @ £5 ¢ e * .~.
' 2. o % v * - o .8
M o . S . LY 1 ® . ° 9
. « * e o ® S e
1.5 - .". B }. °® Y %r o e O .... 9
. Y ¢ o...o «_° ° RO o0 s H
* ¢
. ‘:. f. .ﬂ .: o ® .. ] ¢ ..0... Y e @
2.0 e . = oo °
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Positive: 100(x2 — ]

Negative:

Ml
1
"N
r

2

Otherwise

)2+ (1 —21)* <05

0 20 40 60 80

n

1.00
0.75
0.50
0.25
0.00
—0.25
—0.50

—0.75

-1.00

y(X; W) 1s now a non-linear function

implemented by the network.

Problem statement: Find w such that
o for all or most positive samples y(X; w) > 0.0,

« for all or most negative samples y(x; w) < 0.0.

o



Non-Linear Regression

z = f(X)
= 100(x, — x7)* + (1 — x;)*

Problem statement: Given ({x;,7,}, ..., {X,,z,}), minimize

D @ =[x, W)

W.I.t. W.
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Classification / Regression
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y(X; W) 1s now a non-linear function
implemented by the network.

such that

Classification can be understood as finding w

y(X; W) = f(x)

8
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From Classification to Regression

Minimize ) . [t; log(sigm(f(xs,v:))) + (1 —¢;)log(1 — sigm(f(zi,v:)))
with respect to W1, wa,b,,0,,0..

Linear2 -> n

Minimize Zz(zz - f(xza y’i))27
with respect to Wy, wa, b, by, 0.




Approximating a Surface

Wb
Wbz

10

20

30

£ = f(xay)

€T
— W b b
- W20( 1[y]—|— 1)-|-2

Given ({X{,7;}, .--» {X,,, 2,,}), minimize

20 30 40 50 Z (Zi _ f(Xl))Z

50

0

z = f(X)

= 100(x, — x7)* + (1 — x;)*
EPEL .

with respect to W, w,, b, b, .




Interpolating a Surface

10 20 30 40 50

z = 100(x, — x2)* + (1 — x;)? 3-node hidden layer

.

F
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Interpolating a Surface

10

20 +

30

40

loss: 1.089789e+00

50

0 10 20 30 40 50

z =100(x, — x7)* + (1 — x;)* 4-node hidden layer
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Adding more Nodes

20 30 40

10

z=100(x, — x7)* + (1 — x;)*

=PrL

50

0

10

20 ¢

30+

40}

50
0

10 20 30 40 50

2 nodes -> loss 3.02e-01

0

0 0

50

0 10 20 30 40 50

3 nodes -> loss 2.08e-02

40 50

4 nodes -> loss 8.27e-03

.




Adding more Nodes

0 10 20 30 40 50

2 nodes -> loss 2.61e-01 3 nodes -> loss 2.51e-04

0

10

20

30 F

40

0 10 20 30

50 .
0 10 20 30 40 50

z = sin(x)sin(y) 4 nodes -> loss 3.07e-07
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More Complex Surface
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More Complex Surface

msﬂ'i’ o=

w
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50 nodes -> loss 3.65e-01 100 nodes -> Ioss 2. 50e 01

0 T

10 J
. -

20/ M. -

-
- 5 0.
- ' °
I — T ) S e T I
f ( 7y 125 nodes -> loss 2.40e-01 300 nodes -> loss 1.92e-01
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Universal Approximation Theorem

A feedforward network with a linear output layer and at least one hidden
layer with any 'squashing’ activation function (e.g. logistic sigmoid) can
approximate any Borel measurable function (from one finite-dimensional
space to another) with any desired nonzero error.

Any continuous function on a closed and bounded set of Rn is Borel-
measurable.

—> In theory, any reasonable function can be approximated by a one-
hidden layer network as long as it is continuous.

[Hornik et al, 1989; Cybenko, 1989] A

"N
r




In Practice

0.35 \ T T T T T T T T i 0.35 A
0.30 | R 0.30 }
8 2
S 0.25 S 0.25
0.20 | g 0.20 }
015 Il Il 1 1 Il 1 Il Il 015 ) 1 Il
50 100 150 200 250 300 350 400 450 500 500 1000 1500 2000
Number of nodes Number of weights

e It may take an exponentially large number of parameters for a good approximation.
e The optimization problem becomes increasingly difficult.

—> The one hidden layer perceptron may not converge to the best solution!

.
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MNIST

S0 /1q]|#

* The network takes as input 28x28 images represented as 784D
vectors.

* The output is a 10D vector giving the probability of the image
representing any of the 10 digits.

 There are 50’000 training pairs of images and the
corresponding label, 10’000 validation pairs, and 5000 testing
pairs.

PrL A
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100 +

99 A

98 A

97 4

96 4

95 1

100 A

99 4

98 4

97 1

96

95 A
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MNIST

—— Training accuracy
- Testing accuracy

40 60 80 100

120

/
4 —— Training accuracy

——— Testing accuracy

20000 40000 60000 80000 100000

Results

nln =784
nOut = 10
20 < hidden layer size < 120

e MLPs have many parameters.
e This has long been a major problem.
—> Was eventually solved by using GPUs.

SVM: 98.6

Knn: 96.8
e Around 2005, SVMs were often felt to

be superior to neural nets.

e This is no longer the case ....




Deep Learning

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

— / - —
— — .

\.—::E > . = S output layer hl — 01 (WlX]_ + b]-)
: X k h, = 02(W2h2 ‘|'b2)
2 : vios

The descriptive power of the net increases with the number of
layers.

In the case of a 1D signal, it is roughly proportional to IT":
where wiis the width of layer n.

=PrL Telgarsky, JIMLR16 A




One Layer: Two Hyperplanes

. WT bl
h = max(Wx + b, 0) with W = W%p and b = ]

y=wlh+V x2A




Two Layers: Two Hyperplanes

h = max(Wx+ b ,0)

h' = max(W'h + b’, 0)
y = W//Th/ + b’
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Graphical Interpretation

Hyperplanes at
every level of
the network
split the space.

o
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Graphical Interpretation

Hyperplanes at
every level of
the network
split the space.

o




Graphical Interpretation
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Graphical Interpretation

-
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Multi Layer Perceptrons

The function learned by an MLP using the RelLU, Sigmoid, or
Tanh operators is:

* piecewise affine or smooth;

* continuous because it is a composition of continuous
functions.

Each region created by a layer is split into smaller regions:

* Their boundaries are correlated in a complex way.
* Their descriptive power is larger than shallow networks for
the same number of parameters.
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Second Layer for Approximation

I — f (CE’ y) 1 Layer: 125 nodes -> loss 2.40e-01 2 Layers: 20 nodes -> loss 8.31e-02
501 weights in both cases

PFL -
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Adding a Third Layer

-

I — f (CE ] y ) 2 Layers: 20 nodes -> loss 8.31e-02 3 Layers: 14 nodes -> loss 7.55e-02

501 weights

477 weights

4
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Adding a Third Layer

I — f (CE ] y ) 3 Layers: 15 nodes -> loss 5.93e-02 3 Layers: 19 nodes -> loss 4.38e-02
541 weights 837 weights

] -




Multi Layer Perceptrons

] Linear 2 -> n
Linear 2 -> n

Cnear 2 >
Linearn -> n E{>

-
Linearn -> 1
Linear n -> 1 )
Linear n -> 1

0.40

y e Adding layers tends to deliver
| better convergence properties.

| o In current practice, deeper is
. \/\/ usually better.

250 300 350 400 450 500 550 600
Number of weights
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MLP

Linear 2 -> n

Linear n -> n
Linear n -> 1

properties have
pypass, which al
compute residua

to ResNet

Linear 2 -> n
Block n -> n Linear n -> n

Block n ->n Linearn -> n

Linear n -> 1

x+12(o(11(x))

-urther improvements in the convergence

peen obtained by adding a
ows the final layers to only

S.

II x

.




Improving the Network

50 50
O 10 20 30 40 50 O 10 20 30 40 50 O 10 20 30 40 50

Original 51x51 image: MLP 10/20/10 Interpolation: MLP 10/20/10/10 Interpolation:
2601 gray level values. 471 weights, loss 6.43e-02. 581 weights, loss 5.30e-2.

0.35
0.30
0.25 1
o
2
S
0.20 | E
0.15

Linear 2 -> 10
Linear 10 -> 20
Linear 20 -> 10
Linear 10 -> 10
Linear 10 -> 10
Linear 10 -> 1
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Digital Images

136 139 161 159 163 165 171 1735 173 171 166 159 157 155
152 145 136 130 151 199 151 1549 153 161 163 163 153 151
145 1499 149 145 140 133 145 1493 145 1495 145 1496 1438 1495
143 1493 141 145 145 145 141 136 136 135 135 136 135 133
131 151 129 129 133 136 140 1492 142 155 130 125 126 120
115111 103 106 106 110 120 130 137 192 149 1491 123 123
117 102 093 099 099 099 100 110 125 136 1491 1497 1497 1495
136 129 116 105 096 096 100 107 116 131 141 147 150 152
152 152 137 129 113 103 105 103 117 129 133 150 157 159
159 157 157 159 135 121 120 120 121 l? 136 1497 155 163
165 165 163 163 163 166 136 151 135 138 140 145 159 163
166 165 170 165 166 168 170 173 145 1493 1497 1495 152 159
165 173 173 175 173 171 170 173 177 175 151 151 153 156
161 170 176 177 177 179 176 174 1794 176 177 179 155 157
161 162 168 176 180 150 180 152 180 175 175 175 130 150

L = e

A MxN |ma e can be represented as an MN vector, in which case

ne|ghbor ood relationships are lost.

By contrast, treating it as a 2D array preserves neighborhood

relatlonshlps
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Image Specificities

In a typical image, the values of neighboring pixels
tend to be more highly correlated than those of

distant ones.
An image filter should be translation invariant.

—> These two properties can be exploited to
drastically reduce the number of weights required by
CNNs using so-called convolutional layers.

PrL A
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Fully Connected Layers

——_ N———_ —

25 ¥ output layer

The descriptive power of the net increases with the
number of layers.

In the case of a 1D signal, it is roughly proportional
to J[[w. where W, represents the width of a layer.
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Convolutional Layer

input neurons
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Feature Maps

28 x 28 input neurons first hidden layer: 3 x 24 x 24 neurons

— 4

Filters:

=PrL



Filters

a0y)

déds g(x,y) didy glx,y)

dfdx2 glx.y) d/dy2 glx.y) dfdxdy glx.y)

dfdx3 gx.y) dfdy3 gx.y) dfdx2dy gix.y) dfdxdy2 glx,y)

Derivatives Learned filters

=PrL



Pooling Layer

hidden neurons (output from feature map)

max-pooling units

Reduces the number of inputs by replacing all
activations in a neighborhood by a single one.

Can be thought as asking if a particular feature
is present in that neighborhood while ignoring

the exact location.

PrL A
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Adding the Pooling Layers

28 x 28 input neurons 3 X 24 x 24 neurons

—_—

3 x 12 x 12 neurons

—

——

-




Ml

Adding a Fully Connected Layer

28 x 28 3 x 24 x 24

. 3 x 12 x 12

/

(S—

\
l
l
OOOOQFOOOO

Each neutron in the final fully connected layer is
connected to all neurons in the preceding one.

Deep architecture with many parameters to learn but
still far fewer than an equivalent multilayer perceptron.

PrL A




LeNet (1989-1999)

S| LeNet 5
answer: 0

?u
h- -
Dl
Al
s
"

=
K
-
L) |
=

J
0
2

=PrL



Lenet Results

100 -
—— Testing accuracy (1 hidden layers)
- Testing accuracy (2 hidden layers)
% 10 channels, 50 hidden ,
99 - X 10 channels, 100 hidden LN5: 99.05
20 channels, 50 hidden
............. .X..x..x...):(.... A AR § "
X X 20 channels, 100 hidden SVM: 98.6
98 A

/

................................................................................................................... Knn: 96.8

20000 40000 60000 80000 100000

=PrL A




AlexNet (2012)

5 Convolutional Layers 1000 ways
Softmax

3 Fully-Connected
Layers

'ask: Image classification
raining images: Large Scale Visual Recognition Challenge 2010
Training time:|2 weeks on 2 GPUs \

Major Breakthrough: Training large networks
has now been shown to be practical!!

EPFL Krizhevsky, NIPS’12 A




AlexNet Results

mite container shi motor scooter leopard ,
mite container srlp motor scooter ledpard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

starfish drilling platform golfcart Egyptian cat

Ty B 00
T IR
\ o At the 2012 ImageNet Large Scale
Visual Recognition Challenge,

mushroom herry i dagastarcat.  AlexNet achieved a top-5 error of
= - dalmatisn[__squivermonkey] 15,39, more than 10.8% lower
beach ::::::Ii jegl:z :::::: ﬁordshire:':::::::‘ ln::: than the runner up.
fire engine || dead-man's-fingers currant howler monkey

e Since 2015, networks outperform

humans on this task.
cPFL A




Feature Maps

== \ i (c) @)
First convolutional layer  Second convolutional layer

Some of the convolutional masks are very similar to oriented
Gaussian or Gabor filters.

The trained neural nets compute oriented derivatives, which the
brain is also believed to do.

EPFL A




Reminder: Discrete 2D Convolution

Input image: {

000000

Convolved image: m**f

oo

00000©

B et

elololole oy

Convolution mask m, also known as a kernel.

myq

m., 1

my

w

m

ww

5 y) = ) ) mli ) — iy — )

=0 j=0
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Reminder: 3X3 Masks

0O 1fand

Prewitt operator

1

1

X derivative
H

—1 -1 -1]
O 0 O

1

y derivative

-1 0 1]
-2 0 2

-1 0 1

Sobel operator

and

—1

-2

—1
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Filter Banks

=N §
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Bigger and Deeper

image |
conv-64
conv-64
maxpool
conv-128

conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

FC-1000 “hibiscus” “dahlia”
softmax

VGG19, 3 weeks of training. GoogleLeNet.

“It was demonstrated that the representation depth is beneficial for the classification accuracy, and
that state-of-the-art performance on the ImageNet challenge dataset can be achieved using a
conventional ConvNet architecture.”

E P F L Simonyan & Zisserman, ICLR’15 A




VGG-19
image

eazs [ mowmer ]
shre: 224

output
size: 112

Deeper and Deeper

34-layer plain 34-layer residual

image Image

output

size: 56

£ %
deieiliedle
Bl

size: 28

A
3 conv, 512

[ ]
[ 38wmwsz ]
[ ]
[ J

¥
34 conv, 512

size: 18 pock/2

33 conw, 512

3x3 conw, 512

]
J
3dconv, 512 |
]

¥
33 corw, 512

provel I

[ fc 4056 ]

S T

=PrL

Resnet

error (%)

G

X

x+12(o(11(x))

34-layer
- e =
plain-18
===plain-34
200 10 2I0 3.0 4‘0 5'0
iter. (led)

=R esNet-34 34—lar\'er
‘, 1 1 L
"00 10 20 30 40 50

He et al., CVPR’16




Without Max Pooling

28

I
12 20
O CoNV 5X5, Stride L PR Ry
v conv + relu 99.42 98.31
Yia a0
i Conv 5x5, stride 1 el Y/
2

0 J

i fc + relu
{ 50 |

\ 4

10

fc + relu

Max pooling can be replaced by Gaussian convolutions
with stride > 1 .

E P F L Springenberg et al., ICLR’15 A




Image Classification Taxonomy
1989 —2016

LSTM LeNet5
(Hochreiter and Schmidhuber, 1997) (LeCun et al., 1989)

Bigger + GPU

Deep hierarchical CNN
(Ciresan et al., 2012)

Bigger + RelLU +dropout

No recurrence .
Fully convolutional

v
AlexNet

f (Krizhevsky et al., 2012)
Bigger + small filters MLPConv

Overfeat
(Sermanet et al., 2013)

Net in Net
v (Lin et al., 2013)
Highway Net .
(Srivastava et al., 2015) VGG Inception modules

(Simonyan and Zisserman, 2014)

GooglLeNet
(Szegedy et al., 2015)

No gating ResNet Batch Normalization

(He et al., 2015)

BN-Inception
Wider (loffe and Szegedy, 2015)
Dense pass-thro Aggregated chahpels

Wide ResNet DenseNet ResNeXt Inceptlon -ResNet
(Zagoruyko and Komodakis, 2016) (Huang et al., 2016) (Xie et al., 2016) (Szegedy et al., 2016)




G

x+12(o(11(x))

ResNet block

—> Add skip connection to produce an output
EPFL Of the Same Slze as the InpUt. Ronneberger, MICCAI’15




Training a U-Net

Train Encoder-decoder U-Net architecture using binary cross-entropy

Minimize
| P
Lice(%,y; W) === [y;log(#:) + (1 = yi) log(1 — 4
1
where

= fw (X)7
e X In an input image,

e y the corresponding ground truth.

=PrL Mosinska et al, CVPR’18. A




Network Output

Image BCE Loss Ground truth

e Good start but not the end of the story.
e We will discuss this again during the delineation lecture.

PrL A
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treets Of Toronto

False negatives
False positives

=PrL




Transformers

B Patches Y
- - = —( MLP | }—» —

e - 2 —( MLP | }—»

- =\T#% | (MLPT ) &

> @ 3] - (MLP1 }—»

Global Average Pooling

[ ]
Tff?fffff

N x (Mixer Layer)

MM@Q@M

Per-patch Fully-c

L e

Ll IR //.'// b

-

e Break up the images into square patches.
e Transform each path into a feature vector.
e Feed to a transformer architecture.

PEL
i Tolstikhin et al. , ArXiv’21
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Self Attention

Outputs | | \

Values

GiVen X — [Xl’ cooy XI] Inputs | 1L

X, X X

- alx;, X;] 1s the attention that x; gives to Xx; . It

measures the influence of one on the other.
- It can be computed for all I and j using far fewer
weights that 1n a fully connected layer.

—> Provides context.

..

Ml
v
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Transformer Layer

Residual connec tion Residual connection

Multi-head self-attention LayerNorm

X <« X + Sa(X)

X « LayerNorm(X)
X. — X.+mip[x;] Vi
X « LayerNorm(X)




Depth from Single Images

MiDaS (MIX 6) DPT-Hybrid DPT-Large

e Pros: Good at modeling long range relationships.
e Cons: Flattening the patches looses some amount of information.

=PFL Ranftl et al., CVPR’21 A




U-NET + Transformers

e A CNN produces a low-resolution feature vector.
e A transformer operates on that feature vector.
e The upsampling is similar to that of U-Net

Ml
"N

—> Best of both worlds?
Chen et al., TETCI’23 A




Regression

ca P c2 P2 cs "c1 Fe2
O O
O o FC3
— —~ —~ @) (@) @)
Input —>§—>g_>ﬁ+ §+g**§**§+§+ Output
O O O
(@) O
. . i O] 9]

' F(x;, W1,...,.Wr.by,...,b) —v;|?
VIVI}{%lZH (X7 1 ’ L,WP1, ’ L) YH

1

using
stochastic gradient descent on mini-batches,
dropout,

hard example mining,

Ml
v
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Body Pose Estimation

Pavlakos, CVPR’19

L'J



People and their Clothes

e Regress the body pose.
e Drape the garments on the body.
e Enforce consistency.

Input Ours (raw) Ours (post ref.)
=P-L De Luigi, CVPR’23 88




Crowd Counting

EPFL at lunchtime: The colors denote crowd density.

Liuetal., CVPR’22



Ml

Brains vs Neural Networks

e Neural networks are said to “bio-inspired”.

e An excellent marketing argument but how
true is it?

"N
r




Monkey Cortex

a Dorsal pathwa ¢
< R (©) V1 V2 V4 T

(i)
(b)
SC
= <l e : Classical RF
4B | /\~ MT Parietal cortex \
ey N ek} iy L& LT A A
P | 4Cbl |, , BIobs i— '
o o Non-classical RF
K /Ibr;t%r- Ll Inter V4 |- Temporal cortex
obs
LGN Vi V2 iy 7 f Zf
trends in Neurosciences

Pink: Feed forward.
Cvan: Feed back.

Horizontal
Lamme and Roelfsema, Trends in Neuroscience’00 A
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Human Visual Cortex

.' ~:=;-3=—'<§3
W ;:éf Ventral pathway
« —

N

=PrL A




Recognize And Classify: Animal /No Animal

Subjects must raise their hand if they see
an animal;

e 60 images
e 1 image per second

- Measure their reaction time.

Simon Thorpe, Nature, 1996 A

Ml
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Reminder: Recurrent Pathways

“Shape stimuli are optimally reinforcing each other when separated in time by ~60 ms,

suggesting an underlying recurrent circuit with a time constant (feedforward + feedback)
of 60 ms.”

=PrL Drewes et al. , Journal of Neuroscience, 2016 A




Adversarial Images

=PrFL Szegedy et al. 2013 A




Brains vs Neural Networks

e Neural networks are said to “bio-inspired”.

e An excellent marketing argument but how
true is it?

Not that good:

e Much feedback is involved in biological systems.
e \We don't need large databases to learn.
e \We are not as susceptible to adversarial examples.

Neural nets are powerful but not the final answer!

PrL A
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XKCD’s View On The Matter

THIS 1S YOUR MACHINE [EARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Ml
v
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r



Deep Nets in Short

Deep Neural Networks can handle huge training
databases.

When the objective function can be minimized, the
results are outstanding.

There are failure cases and performance is hard to
predict.

—> Many questions are still open and there is much
theoretical work left to do.

Poo
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Alpha Go

e Uses Deep Nets to find the most
promising locations to focus on.

e Performs Tree based search when
possible.

S e e e B -« Relies on reinforcement learning and
ALL SYSTEMS GO other ML techniques to train.
a 7

—> Beat the world champion in 2017.

SONGBIRDS SAFEGUARD WHEN GENES
A LA CARTE TRANSPARENCY GOT ‘SELFISH’
Hlegal harvest of millio; Don’t let Dawkins’s calling

O NATURE.COM/NATURE
8 04>
lega f ns mn openness backfire awkin:
of Mediterranean birds on individuals card forty years on
PAGE 452 PAGE459 9 "770028%083095'

PAGE462

EPFL ‘@




Optional: ChatGPT

Output
Probabilities

t

|  Softmax |

At this point, the transformer
layer is fed both the prompt and

|  Linear )

( )
| Add & Norm J<=~

=5 the already generated text.
Forward . . .
I . e [t uses this information to guess
PRy &fNorm ) \ [ Ar\jji::;;n i the next word.
s | ([ [[lv« ® The process is then iterated.
N LAdd & Norm Je=
* | (> Add & Norm } e
Multi-Head Multi-Head
Attention ention
— | |/ Keys to ChatGPT success:
st o e The network looks back as far
iti _n D ¢ Posnpnal
Enieading Froodng @S5 Needed.
Input Output
Emb%dmg Embetgdm e It uses a huge corpus.
e St e Human guided training.
(shifted right)

Vaswani’17 ‘ﬂ
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|
|
How do | recover from a stall ]

If you are asking about a stall in an aircraft, the first thing to do is to identify the cause
of the stall. This may involve checking the flight instruments, looking outside the
aircraft for visual clues, and consulting the aircraft's flight manual. Once the cause of
the stall has been determined, the appropriate recovery procedure can be initiated.
This may involve reducing the angle of attack, increasing power, or taking other
corrective action to restore the flow of air over the wings and regain control of the
aircraft. It is important to follow the correct procedures for recovering from a stall, as

attempting to recover improperly can make the situation worse. If you are not trained

in how to recover from a stall, it is best to consult with a qualified instructor or pilot.

How do | recover from a spin in a glider

=P

A little late for that.

Recovering from a spin in a glider involves a few key steps. First, you should try to stay
calm and avoid panicking. This will help you think clearly and make the right decisions
to recover from the spin.

Next, you should locate the spin recovery instructions in your glider’s flight manual
and follow them carefully. These instructions will be specific to your glider and will
outline the correct procedure for recovering from a spin. In general, the steps for
recovering from a spin in a glider will involve using the controls to stop the rotation of

the aircraft and regain control.

That’s going to get you killed!!

Here are some general guidelines for recovering from a spin in a glider:

1. Pull the control stick firmly and fully back to the neutral position. This will stop the

rotation of the aircraft and help you regain control.

2. Apply full opposite rudder to the direction of the spin. This will help stop the
rotation of the aircraft and straighten it out.

3. Once the rotation has stopped and the aircraft is flying straight and level again,
gently ease the control stick forward to return to normal flight.

It's important to remember that recovering from a spin in a glider can be a challenging

and potentially dangerous maneuver. If you're not sure how to recover from a spin, or

L 12.12.2022

ChatGPT

To recover from a stall in aviation, the pilot should follow these steps:

1. Reduce the angle of attack by pushing forward on the control column or yoke.

2. Apply full power to the engine(s).

3. Keep the wings level by using the ailerons or by turning the yoke in the direction
opposite the wing that is dropping.

4. Once the airplane begins to pick up speed and the wing starts to produce lift again,
gently pull back on the control column or yoke to level the wings and regain altitude.

5. Be aware of the altitude and terrain and take appropriate action to regain altitude if
necessary.

6. Once the aircraft is out of stall, maintain a safe airspeed, and climb to a safe altitude.

It's important to note that these steps are general guidelines and may vary dependj
the type of aircraft and the specific circumstances of the stall. It's also important t<| It is_

practice stall recovery in a simulated environment before attempting it in an actual hgm—

Recovering from a spin in a glider typic.
Identify the spin and its direction. CorreCt' YOU Wi ” ||Ve.

Neutralize the controls by releasing any pressure on the ailerons, rudder and elevator.

Apply full opposite rudder to the spinning direction and hold it until rotation stops.
Apply forward stick to reduce the angle of attack and increase airspeed.

b Gt R e

Level the wings and check for proper control response.

It's important to note that a spin recovery procedure may vary depending on the type of
glider and the specific training you have received. Always follow the instructions provided
by the manufacturer or your instructor. Additionally, always make sure you are properly
trained and familiar with the spin recovery procedure before attempting it.

27.01.2023
What changed? Presumably, enough people
complained and the system was re-retrained
with correct responses.




ptional: Generative Models Taxonomy
2014 —2023

=PrL

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

VAE

VAE-GAN

VQ-VAE

® World Models

VQ-VAE-2

@eanN
. CGAN

@ pcean

pix2pix
WGAN
CycleGAN
MuseGAN
ProGAN
@ sAGan

' BigGAN

‘ StyleGAN

. StyleGAN2

‘ VQ-GAN

. StyleGAN3

' ViT VQ-GAN

' StyleGAN-XL

Oeru

O PixelRNN

(O PixelcNN © Realnve

O PixelCNN++

O Transformers

Oepr @ cLow

BERT @ FrJoRD
Music Transformer

GPT-2

MuseNet

O NesN
O T5

Oerr3 © popm

O Vision Transformer O DDIM

O GPT-Neo
GPT-J
Codex

Megatron-Turing NLG

cLIP O DALL.E

Gopher (© Latent Dittusion O GLIDE

LaMDA GPT-NeoX

PaLM Chinchilla DALLE 2 (") imagen
OPT Flamingo = Parti
) BLoom & Fart
Stable Diffusion ()
(O chatcpT MusicLm (2 MUSE
@ Toolformer ControlNet PaLM-E
LLaMA Visual ChatGPT () chiig

Model Type

Variational Autoencoder

[ Generative Adversarial Network
[ Autoregressive / Transformer
B Normalizing Flow

[ Energy-Based / Diffusion Model
[ Multimodal Model




What does it mean for Vision?

Two distinct approaches to increasing performance:

e Use ever larger training databases.
e How do build them?
e How do we tame the computational explosion?

e Use existing knowledge to reduce the need for training data.
e Physics-based knowledge.
e Geometrical knowledge.

—> Self-supervised methods.

.
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