Shape from X

e One image:
e Texture
e Shading
e Two Images or more:
e Stereo
e Contours
e Motion
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When objects move at equal speed, those
more remote seem to move more slowly.

Euclid, 300 BC
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Velocity vs Distance
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<—Z——Cen'ter of Projection
at Time ¢

Apparent velocity is:

e Inversely proportional to the distance of the
point to the observer.

e Proportional to the sine of the angle between
the line of sight and the direction of translation.
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Epipolar Plane Analysis

Image sequence
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Image cube
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Generalized Motion

Orthogonal Non-orthogonal View direction
viewing viewing varying
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Focus of Expansion

For a translational motion of the camera, all the
motion-field vectors converge or diverge from a
single point: The focus of expansion (FOE) or
contraction (FOC).




Landing a Plane

e Humans are terrible at judging absolute distances.
e But, we can see where the FOE is.
= That’s what pilots are taught to use.

EPFL Ciab




Microflyer

The plane detects FOEs and
uses them to avoid collisions.

“PFL Crlab Zufferey et al. , IMAR 2010. A




Motion Field Estimation

Approaches can be classified with respect to the
assumptions they make about the scene:

e Images properties remain invariant under
relative motion between the camera and the
scene.

e Feature points can be tracked across frames.

“P-L Qtab




Assumption 1: Brightness Constancy

Image measurements (e.g. brightness) in
a small region remain the same although
its location may change.

Ix+dx,y+dy,t+dt) =1Ix,y,1)
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Assumption 2: Temporal Consistency

The image speed of a surface patch only changes
gradually over time.

P:: L (ab A




Assumption 3: Spatial Consistency

* Neighboring points in the scene typically belong to
the same surface and hence have similar motions.
 Since they also project to nearby image locations,
we expect spatial coherence of the flow.

EPFL Gt 4t




Spatio Temporal Derivatives

Under the assumptions of

e Brightness constancy,
¢ Temp0l’a| COﬂSiStenCy, Image projection at time t

™
I(x(t),y(t),t)
ol de oldy ol

ox dt oy dt ot

we write: cst

= ()
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Normal Flow Equation
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Ambiguities

e At each pixel, we have 1 equation and 2 unknowns.

e Only the flow component in the gradient direction
can be determined locally.

The motion is parallel to the edge,
and it cannot be determined.

|
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Local Constancy

Assume the flow to be constant is a 5x5 window:

- I:(p1)  Iy(p1) - I;(p1) |
Lz(p2)  Iy(pP2) [ w ] — _ | L(p2)
) Ix(l;25) Iy(r->25) ] i It(I;25) ]

--> 25 equations for 2 unknown, which can be
solved in the least squares sense.
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Enforcing Consistency

Under the assumption of spatial consistency: = :gfj;

. Hough Transform on the motion vectors.

. Regularization of the motion field.

. Multi scale approach.

But, the world is neither Lambertian nor smooth.

- These assumptions are rarely valid.
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Deep Networks to the Rescue

‘ Emergy 1,
/ Minimization
\

Optical Flow

2
Minimize E(U) = J (Ixu)C + Lu, + It> +a||Vu||* + Bl Vv, ||*dxdy

VAN AN

Feature Il
Extractor iy
N | N
Minimization Q onvolutional
! g‘;"t“‘e / L / Neural Networks
tractor 2 |
Optical Flow
Per-pixel Optical Flow
Feature Descriptor
« CNN is used as feature extractor.  Direct regression from images using and hour-
» These features can be trained to be glass shaped architecture reminiscent of U-Net.
more invariant. » The best current techniques uses this approach
but this could change.
“PFL Qtab




Recursive Scene Flow

Output
r Disparity
“ B B
eferen e e N
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Decoder

Scene Flow + Disparity

—
-
|
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Projecting to ’
Optical Flow

1. The scene flow is estimated.

2. It is used to warp the feature maps.
3. It is then recomputed.
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Cilab Hur and Roth, CVPR’20 ‘E




Depth vs Flow

ke o -
Monocular depth  Monocular flow  Flow visualization

CPEL Gt Hur and Roth, CVPR'20 _f§




Adding Self-Attention Layers

‘rame |
Fra Frame
& —t Features
| cature \
~ . )
\
\
S

e Adding self-attention layers tends to boost performance.
e Still a risk to overfit to the training domain.
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Tracking Points across Images
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3D Shape Reconstruction
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Multi-View Projection

* n 1mage points are projected from 3-D scene points
OVEr m views via

X; — PZXJ

wherei =1, ..., mandj =1, ..., n.

e Here each P 1s a 3 x 4 matrix and each X]- 1S a
homogeneous 4-vector.
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Orthographic Projection

/ Object

Scating T i

E U= SX

Orthographic
Ima /
Center of /ge Projection

Projection
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Multi-View Orthographic Projection

* The last row of each Piis (0, 0, 0, 1) for affine
cameras, so we can “ignore” it and write the
orthographic projection as:

xi = M'X ; + t
J J
where each X 1s now an inhomogeneous 3-vector.

 Here, each M* a 2 x 3 matrix, and each t' a 2-vector.

“PFL Qtab




Reconstruction Problem

 Estimate affine cameras Mi, translations ti, and 3-D
points Xj that minimize the geometric error in 1mage

coordinates:

“PFL Qtab




Simplifying the Problem

* Normalization: We can eliminate the translation vectors ti by
choosing the centroid of the image points in each image as
the coordinate system origin

) 1 1 1
Xj%Xj——ZXj
T .

« Working in “centered coordinafes”, the minimization
problem becomes:

. . — 2
min > (x5 — M'X;)
¥,

* This works because the centroid of the 3-D points is
preserved under affine transformations
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Matrix Formulation

e [et the measurement matrix be:

1 1 1

X% X% el Xg

w=| X X ... X
m m m

X7 x5 ... X,

e Since Xé— — Min, this means solving

Byt
W = : [Xl,...,Xn]
7M™ A
2mx3 b - 3x1
in the least squares sense.
EPEL Qtab




Solving with SVD

* There will be no exact solution with noisy points, so we want the
nearest W’ to W that is an exact solution

— W’ is rank 3 since it’s the product of a 2m x 3 motion matrix
M’ and a 3 x n structure matrix X’

* Use singular value decomposition to get rank 3 matrix W’ closest
to W

— Let SVD of W=UDVT
— Then W’ =U,_.D. .V .T where

2mx3 nx3 °
— U, 5 1s the first 3 columns of U, D, ; 1s an upper-left 3 x 3
submatrix of D,
— V_Tis first three columns of V.

(ab A
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Structure and Motion

e Set stacked camera matrix as
M’ =U, . sqrt(D; ;)

e Set stacked 3-D structure matrix as
X' =sqrt(D, ,)V_ T

nx3
so that W = M’X’
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Metric Upgrade

There 1s an affine ambiguity since an arbitrary 3 x 3 rank
3 matrix A can be inserted as:

W’ = (M’ A)(A-1X)

Get rid of ambiguity by finding A that performs “metric
rectification”

Affine camera provides orthonormality constraints on A:
— Rows of M=M’A are unit vectors: m. . m. = 1.

— Rows of M=M’A are orthogonal: m; . m; =0.

Everything relies on linear algebra but 1s limited to
orthographic cameras.

Cilab



Simultaneous Localization And Mapping

= Compute point tracks.
= Infer both camera motion and 3D structure.

— o Steedly et al., ICCV'03 €




Archeological Reconstruction
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Sequential Structure from Motion

Ia 0 \/Xl{fv t3

AR, Aty R,, t,

-> Trajectory and 3D points defined up to a Euclidean motion and scale

EPFL Gt Pr-




Ml

P.

=

L

Bundle Adjustment

1,()><

R, t
argminRi,ti,Xj 2 Z HPI'O] (Ria tia X]) o XJlH
L
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Global Non-Linear Optimization

l

argminRi,t_,Xj Z Z HPI'O] (Ria tia X]) o X}HZ
L]

e Often performed using the Levenberg-Marquardt algorithm.
e Many parameters to estimate, but sparse Jacobian matrix.
e Initial estimates computed using the eight point algorithm:

- Given 8 point correspondences between a pair of images, AR and

AT can be estimated in closed form by solving an SVD.
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From Images to Houses (1)
A - ‘

Awts

e Pick an area on your phone.
e The system will define a flight plan for your drone.
e It will fly it and bring back images.

EPEL oo A
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From Images to Houses (2)

e Download the images on your computer.
e Get a full model without further human intervention.

Grab PIxaD e



Virtual Matterhorn

)

EPFL (ab PIX4D
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Real Time Augmented Reality

C@/Lob

On the train to Kyoto

Klein and Murray, ISMAR’07 A



Simultaneous Localization And Mapping

-

A robot can reconstruct its environment and
position itself at the same time.

=PFL Cilab Engel etal., ECCV’14 A




Fusing Depth Maps

» Both the depth camera and the person are
moving.

» Use a deformable model to combine the
data over time.

= Real-time implementation.

=PFL Citab Newcombe et al., CVPR’15 A




Virtual Reality Headsets

Microsoft Hololens Magic Leap

... and both of them are being worked on in Zurich!
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Strengths And Limitations

Strengths:
e Combine information from many images.

Limitations:
e Requires multiple views.
e Requires either texture or a depth camera.
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