Shape from X

- One image:
 - Texture
 - Shading
- Two images or more:
 - Stereo
 - Contours
 - Motion

Motion

When objects move at equal speed, those more remote seem to move more slowly.

Euclid, 300 BC

Velocity vs Distance

Apparent velocity is:

- Inversely proportional to the distance of the point to the observer.
- Proportional to the sine of the angle between the line of sight and the direction of translation.

Epipolar Plane Analysis

Image sequence

EPFL

Image cube

Generalized Motion

Orthogonal viewing

Non-orthogonal viewing

View direction varying

Focus of Expansion

For a translational motion of the camera, all the **motion-field** vectors converge or diverge from a single point: The focus of expansion (FOE) or contraction (FOC).

Landing a Plane

- Humans are terrible at judging absolute distances.
- But, we can see where the FOE is.
- → That's what pilots are taught to use.

Microflyer

The plane detects FOEs and uses them to avoid collisions.

Motion Field Estimation

Approaches can be classified with respect to the assumptions they make about the scene:

- Images properties remain invariant under relative motion between the camera and the scene.
- Feature points can be tracked across frames.

Assumption 1: Brightness Constancy

Image measurements (e.g. brightness) in a small region remain the same although its location may change.

$$I(x + dx, y + dy, t + dt) = I(x, y, t)$$

Assumption 2: Temporal Consistency

The image speed of a surface patch only changes gradually over time.

Assumption 3: Spatial Consistency

- Neighboring points in the scene typically belong to the same surface and hence have similar motions.
- Since they also project to nearby image locations, we expect spatial coherence of the flow.

Spatio Temporal Derivatives

Under the assumptions of

- Brightness constancy,
- Temporal consistency,

Image projection at time t

we write: cst =
$$I(x(t), y(t), t)$$

$$\Rightarrow 0 = \frac{\delta I}{\delta x} \frac{dx}{dt} + \frac{\delta I}{\delta y} \frac{dy}{dt} + \frac{\delta I}{\delta t}$$

Normal Flow Equation

$$v \frac{G}{\|G\|} = -\frac{\frac{\partial I}{\partial t}}{\sqrt{\frac{\partial I^{2}}{\partial x} + \frac{\partial I^{2}}{\partial y}}}$$

$$G = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right]$$

$$v = \left[\frac{dx}{dt}, \frac{dy}{dt}\right]$$

Ambiguities

At each pixel, we have 1 equation and 2 unknowns.

 Only the flow component in the gradient direction can be determined locally.

The motion is parallel to the edge, and it cannot be determined.

Local Constancy

Assume the flow to be constant is a 5x5 window:

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

--> 25 equations for 2 unknown, which can be solved in the least squares sense.

Enforcing Consistency

Under the assumption of spatial consistency:

- Hough Transform on the motion vectors.
- Regularization of the motion field.
- Multi scale approach.

But, the world is neither Lambertian nor smooth.

→ These assumptions are rarely valid.

Deep Networks to the Rescue

CNN is used as feature extractor.

Per-pixel Feature Descriptor

- These features can be trained to be more invariant.
- Direct regression from images using and hourglass shaped architecture reminiscent of U-Net.
- The best current techniques uses this approach but this could change.

Recursive Scene Flow

- 1. The scene flow is estimated.
- 2. It is used to warp the feature maps.
- 3. It is then recomputed.

Depth vs Flow

Monocular flow

Flow visualization

Adding Self-Attention Layers

- Adding self-attention layers tends to boost performance.
- Still a risk to overfit to the training domain.

Tracking Points across Images

3D Shape Reconstruction

Multi-View Projection

• n image points are projected from 3-D scene points over m views via

$$\mathbf{x}_{j}^{i} = \mathbf{P}^{i}\mathbf{X}_{j}$$

where i = 1, ..., m and j = 1, ..., n.

• Here each \mathbf{P}^i is a 3 x 4 matrix and each \mathbf{X}_j is a homogeneous 4-vector.

Orthographic Projection

Multi-View Orthographic Projection

• The last row of each P^i is (0, 0, 0, 1) for affine cameras, so we can "ignore" it and write the orthographic projection as:

$$\mathbf{x}_j^i = \mathbf{M}^i \mathbf{X}_j + \mathbf{t}^i$$

where each X_i is now an inhomogeneous 3-vector.

• Here, each \mathbf{M}^i a 2 x 3 matrix, and each \mathbf{t}^i a 2-vector.

Reconstruction Problem

• Estimate affine cameras M^i , translations t^i , and 3-D points X_j that minimize the geometric error in image coordinates:

$$\min_{\mathbf{M}^{i},\mathbf{t}^{i},\mathbf{X}_{j}}\sum_{i,j}\left(\mathbf{x}_{j}^{i}-(\mathbf{M}^{i}\mathbf{X}_{j}+\mathbf{t}^{i})\right)^{2}$$

Simplifying the Problem

• Normalization: We can eliminate the translation vectors **t**ⁱ by choosing the centroid of the image points in each image as the coordinate system origin

$$\mathbf{x}^i_j \leftarrow \mathbf{x}^i_j - rac{1}{n} \sum \mathbf{x}^i_j$$

• Working in "centered coordinates", the minimization problem becomes:

$$\min_{\mathbf{M}^i, \mathbf{X}_j} \sum_{i,j} \left(\mathbf{x}^i_j - \mathbf{M}^i \mathbf{X}_j
ight)^2$$

• This works because the centroid of the 3-D points is preserved under affine transformations

Matrix Formulation

• Let the measurement matrix be:

$$\mathbf{W} = \begin{pmatrix} \mathbf{x}_{1}^{1} & \mathbf{x}_{2}^{1} & \dots & \mathbf{x}_{n}^{1} \\ \mathbf{x}_{1}^{2} & \mathbf{x}_{2}^{2} & \dots & \mathbf{x}_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{1}^{m} & \mathbf{x}_{2}^{m} & \dots & \mathbf{x}_{n}^{m} \end{pmatrix}$$

• Since $\mathbf{x}^i_j = \mathbf{M}^i \mathbf{X}_j$, this means solving

$$\mathbf{W} = \begin{bmatrix} \mathbf{M}^1 \\ \vdots \\ \mathbf{M}^m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1, \dots, \mathbf{X}_n \end{bmatrix}$$

$$\mathbf{2m} \times \mathbf{3}$$

in the least squares sense.

Solving with SVD

- There will be no exact solution with noisy points, so we want the nearest W' to W that is an exact solution
 - W' is rank 3 since it's the product of a 2m x 3 motion matrix
 M' and a 3 x n structure matrix X'
- Use singular value decomposition to get rank 3 matrix W' closest to W
 - Let SVD of $W = UDV^T$
 - Then $\mathbf{W'} = \mathbf{U}_{2mx3} \mathbf{D}_{3x3} \mathbf{V}_{nx3}^{\mathsf{T}}$, where
 - U_{2mx3} is the first 3 columns of U, D_{3x3} is an upper-left 3 x 3 submatrix of D,
 - $-\mathbf{V}_{nx3}^{T}$ is first three columns of \mathbf{V} .

Structure and Motion

Set stacked camera matrix as

$$\mathbf{M'} = \mathbf{U}_{2mx3} \operatorname{sqrt}(\mathbf{D}_{3x3})$$

• Set stacked 3-D structure matrix as

$$\mathbf{X'} = \operatorname{sqrt}(\mathbf{D}_{3x3})\mathbf{V}_{nx3}^{\mathrm{T}}$$

so that W' = M'X'

Metric Upgrade

• There is an affine ambiguity since an arbitrary 3 x 3 rank 3 matrix **A** can be inserted as:

$$\mathbf{W'} = (\mathbf{M'A})(\mathbf{A}^{-1}\mathbf{X'})$$

- Get rid of ambiguity by finding A that performs "metric rectification"
- Affine camera provides orthonormality constraints on **A**:
 - Rows of M=M'A are unit vectors: \mathbf{m}_i . $\mathbf{m}_i = 1$.
 - Rows of M=M'A are orthogonal: $\mathbf{m}_i \cdot \mathbf{m}_j = 0$.
- Everything relies on linear algebra but is limited to orthographic cameras.

Simultaneous Localization And Mapping

- Compute point tracks.
- Infer both camera motion and 3D structure.

Archeological Reconstruction

Green et al., J. of Archeological Science'14

Sequential Structure from Motion

-> Trajectory and 3D points defined up to a Euclidean motion and scale

Bundle Adjustment

$$\underset{i}{\operatorname{argmin}}_{\mathbf{R}_{i},\mathbf{t}_{i},\mathbf{X}_{j}} \sum_{i} \sum_{j} \|\operatorname{proj}(\mathbf{R}_{i},\mathbf{t}_{i},\mathbf{X}_{j}) - \mathbf{x}_{j}^{i}\|^{2}$$

Global Non-Linear Optimization

$$\operatorname{argmin}_{\mathbf{R}_i, \mathbf{t}_i, \mathbf{X}_j} \sum_{i} \sum_{j} \|\operatorname{proj}(\mathbf{R}_i, \mathbf{t}_i, \mathbf{X}_j) - \mathbf{x}_j^i\|^2$$

- Often performed using the Levenberg-Marquardt algorithm.
- Many parameters to estimate, but sparse Jacobian matrix.
- Initial estimates computed using the eight point algorithm:
 - Given 8 point correspondences between a pair of images, ΔR and ΔT can be estimated in closed form by solving an SVD.

From Images to Houses (1)

- Pick an area on your phone.
- The system will define a flight plan for your drone.
- It will fly it and bring back images.

From Images to Houses (2)

- Download the images on your computer.
- Get a full model without further human intervention.

Virtual Matterhorn

Real Time Augmented Reality

Simultaneous Localization And Mapping

A robot can reconstruct its environment and position itself at the same time.

Fusing Depth Maps

- Both the depth camera and the person are moving.
- Use a deformable model to combine the data over time.
- Real-time implementation.

Virtual Reality Headsets

Microsoft Hololens

Magic Leap

... and both of them are being worked on in Zurich!

Strengths And Limitations

Strengths:

Combine information from many images.

Limitations:

- Requires multiple views.
- Requires either texture or a depth camera.

