Question 1

(a) Soit V un volume dans \mathbb{R}^3 de frontière S. Soit $u : V \to \mathbb{R}$ et $\vec{v} : V \to \mathbb{R}^3$ des fonctions de classe C^1. On suppose que $\text{div} \vec{v} = 0$ dans V et $u = 0$ sur S.
Montrer que
$$\iiint_{V} (\vec{v} \nabla u)u\,dV = 0.$$

Indication : Considérer $\text{div} \left(\frac{\vec{v} u^2}{2} \right)$ et intégrer sur V.

(b) Soit V un volume dans \mathbb{R}^3 de frontière S. Soit $f : V \to \mathbb{R}$ de classe C^0 et $\vec{v} : V \to \mathbb{R}^3$ de classe C^1 telle que $\text{div} \vec{v} = 0$. Soit $u : V \to \mathbb{R}$ de classe C^2 tel que
$$\begin{cases}
-\Delta u + \vec{v} \nabla u = f & \text{dans } V \\
\frac{\partial u}{\partial z} = 0 & \text{sur } S.
\end{cases}$$

Montrer que, si u existe, alors on a
$$\iiint_{V} \|\nabla u\|^2\,dV = \iiint_{V} f\,dV.$$

Indication : multiplier (1) par u, intégrer sur V et utiliser une formule de Green.

Question 2

Soit $V = \{(x, y, z) \in \mathbb{R}^3 : 1/4 \leq x^2 + y^2 \leq 1, \ 0 \leq z \leq 1\}$ et S la frontière de V. On note $S = S_1 \cup S_2$ avec

$S_1 = \{(x, y, z) \in \mathbb{R}^3 : 1/4 \leq x^2 + y^2 \leq 1, \ z = 0\} \cup \{(x, y, z) \in \mathbb{R}^3 : 1/4 \leq x^2 + y^2 \leq 1, \ z = 1\}$

et

$S_2 = \{(x, y, z) \in \mathbb{R}^3 : 0 \leq z \leq 1, \ x^2 + y^2 = 1/4\} \cup \{(x, y, z) \in \mathbb{R}^3 : 0 \leq z \leq 1, \ x^2 + y^2 = 1\}$.

1) Trouver $u : V \to \mathbb{R}$ telle que :

$$\begin{cases}
-\Delta u(x, y, z) = 1, & \forall (x, y, z) \in V, \\
u(x, y, z) = 0, & \forall (x, y, z) \in S_2, \\
\frac{\partial u}{\partial z}(x, y, z) = 0, & \forall (x, y, z) \in S_1.
\end{cases}$$

2) Trouver $u : V \to \mathbb{R}$ telle que :

$$\begin{cases}
-\Delta u(x, y, z) = (x^2 + y^2)^{k/2}, & \forall (x, y, z) \in V, \\
u(x, y, z) = 0, & \forall (x, y, z) \in S_2, \\
\vec{\text{grad}} u \cdot \vec{n} = \frac{\partial u}{\partial z}(x, y, z) = 0, & \forall (x, y, z) \in S_1
\end{cases}$$

où k est un entier fixé tel que $k \neq -2$.
Question 3

Soit \(\vec{u}(x, y, z) = \frac{x}{\sqrt{x^2 + y^2 + z^2}} \vec{i} + \frac{y}{\sqrt{x^2 + y^2 + z^2}} \vec{j} + \frac{z}{\sqrt{x^2 + y^2 + z^2}} \vec{k} \).

- Calculer \(\text{div} \ \vec{u} \).

 On considère le système de coordonnées sphériques \(r, \theta, \varphi \). Soit \(\vec{U}(r, \theta, \varphi) \) défini par

 \[\vec{U}(r, \theta, \varphi) = \vec{u}(x(r, \theta, \varphi), y(r, \theta, \varphi), z(r, \theta, \varphi)) \].

- Calculer \(\text{div} \ \vec{U} \).
- Vérifier que les deux expressions coïncident.