Bonus Methodology

Jean-Yves Le Boudec
2017
A non-dominated metric means...

A. a metric vector for which no other vector is better

B. a metric value that is better than or equal to all others

C. a metric value that is better than all others

D. None of the above

E. I don’t know
We measure the performance of a radio link as a function of the modulation rate. Day/night is a nuisance factor. Which experimental plan is a proper randomization of the day/night factor?

A. A
B. B
C. Both
D. None
E. I don’t know
Solution

A proper randomization should be such that

\[P(i|\text{day}) = P(i|\text{night}) \forall i \]

which is true for both A and B.

Answer C
The «scientific method» means

A. Carefully screen all experimental conditions
B. Beware of hidden factors
C. Do not draw a conclusion until you have exhausted all attempts to invalidate it
D. I do not know
A nuisance factor is

A. An unanticipated experimental condition that corrupts the results

B. A condition in the system that affects the performance but that we are not interested in

C. An unpleasant part of the performance evaluation

D. I do not know
A lazy performance analyst obtains a sequence of results as follows.
- X_1 is a sample of $\text{Poisson}(\lambda)$
- to obtain X_n: flip a coin; if TAIL X_n is a sample of $\text{Poisson}(\lambda)$ else $X_n = X_{n-1}$

Is the sequence X_n independent?

A. Yes
B. No
C. It depends on λ
D. I don’t know
Solution

\[P(X_2 = i \mid X_1 = i) = 0.5 + 0.5 \, p_i \]
where \(p_i \) is the probability that a \textit{Poisson}(\(\lambda \)) random variable takes the value \(i \)

\[P(X_2 = i \mid X_1 = j) = 0.5 \, p_i \text{ for } j \neq i \]

\[P(X_2 = i \mid X_1 = j) \neq P(X_2 = i \mid X_1 = i) \text{ when } i \neq j \]

\(X_1 \) and \(X_2 \) are not independent

Answer B
A lazy performance analyst obtains a sequence of results as follows. - X_1 is a sample of $Poisson(\lambda)$
- to obtain X_n: flip a coin; if TAIL X_n is a sample of $Poisson(\lambda)$
else $X_n = X_{n-1}$

Is the sequence X_n identically distributed?

A. Yes
B. No
C. It depends on λ
D. I don’t know
Solution

\[P(X_2 = j \mid \text{TAIL}) = p_j \]
\[P(X_2 = j \mid \text{HEAD}) = P(X_1 = j) = p_j \]

\[P(X_2 = j) = p_j, \forall j \]

And so on \(P(X_3 = j) = p_j, \forall j, \ldots \)

The distribution of \(X_n \) is the same as that of \(X_1 \)

Answer A