Homework Module F
Mobile Networks

Exercise 1. Sequence numbers in MPTCP.

a. Explain why a single sequence space is not enough in MPTCP.

b. A sender has 6 PDUs to send over 3 subflows, each subflow is responsible for sending 2 PDUs. Suppose the Initial Data Sequence Number is 1 and each PDU contains 1 byte of data. Please draw a reasonable sequence mapping on these three subflows.

Exercise 2. Congestion control in MPTCP

In regular TCP, the congestion control algorithm works as follows. For each ACK, increase the congestion window w by $1/w$, resulting in an increase of one packet per RTT. In case of a packet loss, the congestion window is cut by half.

In MPTCP, a connection consists of a set of subflows R, each of which may take a different route through the Internet. Each subflow $r \in R$ maintains its own congestion window w_r. An MPTCP sender distributes packets across these subflows as space in the subflow windows becomes available. Denote RTT_r as the round trip time experienced by subflow r. The windows are adapted as follows:

- For each ACK on subflow r, for each subset $S \subseteq R$ that includes path r, compute:
 $$
 \min_{S \subseteq R, r \in S} \frac{\max_{s \in S} w_s / RTT_s^2}{(\sum_{s \in S} w_s / RTT_s)^2}
 $$
 then find the minimum over all such S, and increase w_r by that much.

- For each loss on subflow r, decrease the window w_r by $w_r/2$.

a. What would happen if, instead of using the MPTCP congestion control algorithm as described above, each MPTCP subflow just ran a regular TCP congestion control algorithm on its own.

b. Explain that when an MPTCP connection has only 1 subflow, the congestion control algorithm behaves similarly to regular TCP.