8: Introduction to Magnetic Resonance

1. What are the components of an MR scanner?
2. What is the basis of the MR signal?
3. How is nuclear magnetization affected by an external magnetic field?
4. What affects the equilibrium magnetization?
5. How do we best describe the motion of magnetization (in the rotating frame of reference)?

After this week you
1. Are familiar with the prerequisites for nuclear spin
2. Know the factors determining nuclear magnetization
3. Can compare magnetizations for different nuclei and magnetic field
4. Know the equation of motion for magnetization
5. Are able to describe the motion of magnetization in lab and rotating frame
6. Understand that MRI has complex mechanisms

8-1. What are the essential components of an MRI scanner?

It's a complex machine …

This course focuses on the major elements of MRI:
- Nucleus
- Magnet
- RF coil
- Gradient coil

Schematic depiction of all MRI components

Cut-open in real life
What are the risks of the scanner being never off?

Superconducting wires cooled to 4He temperature (4K)
Current stays for 1000 years …
It’s a powerful magnet …

Magnetic field B_0 [unit: Tesla, T]
- Earth’s magnetic field $\sim 5 \times 10^{-5}$ T
- Electromagnets < 1.5 T
- MRI 1-7 T

8-2. What is the basis of Nuclear Magnetism?
Classical and quantum-mechanical view

Nucleus \rightarrow angular momentum L (here called P)
\Rightarrow Rotation of electrical charge (nucleus)
\Rightarrow Rotating current
\Rightarrow Dipole moment

Magnetic moment μ of individual spin in induction field B_0:
$\mu = \gamma B$

γ: gyromagnetic ratio (empirical constant)
The angular momentum P of a nucleus is quantized:

$$P_z \text{ has } 2I + 1 \text{ values (m): }$$

$$P = h \frac{\gamma}{2\pi} m, \quad |m| = \frac{1}{2}, \ldots, \frac{I}{2}$$

Spin $\frac{1}{2}$: $P = h\sqrt{3/4\pi}$

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Spin (I)</th>
<th>Gyromagnetic ratio $\gamma/2\pi$ (MHz T$^{-1}$)</th>
<th>Abundance / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>^1H</td>
<td>1/2</td>
<td>42.58</td>
<td>99.98</td>
</tr>
<tr>
<td>^3He</td>
<td>1</td>
<td>6.54</td>
<td>0.015</td>
</tr>
<tr>
<td>^1P</td>
<td>1/2</td>
<td>17.25</td>
<td>100.0</td>
</tr>
<tr>
<td>^2Na</td>
<td>3/2</td>
<td>11.27</td>
<td>100.0</td>
</tr>
<tr>
<td>^1N</td>
<td>1/2</td>
<td>4.31</td>
<td>0.37</td>
</tr>
<tr>
<td>^1C</td>
<td>1/2</td>
<td>10.71</td>
<td>1.108</td>
</tr>
<tr>
<td>^1F</td>
<td>1/2</td>
<td>40.08</td>
<td>100.0</td>
</tr>
</tbody>
</table>
What is the basis for nuclear magnetization?

Unequal population of Energy levels

Energy of a magnetic dipole in magnetic field B_0 (classical):
$$E = -\mu \cdot B_0 = -\mu \cdot \cos \theta \cdot B_0 = -\mu_z \cdot B_0$$

Energy is minimal, when $\mu || B_0$
(Where is that used?) $\vec{\tau} = \mu \times \vec{B}_0$

Quantum mechanical description:
$$E_i = -\frac{\hbar}{2\pi} m_i \cdot B_0 \quad m_i = -I, \ldots, I$$

Boltzmann statistics/distribution: Unequal population of energy levels
$$\frac{N_1}{N_2} = e^{\frac{\Delta E}{kT}}$$

k: Boltzmann's constant ($1.4x10^{-23}$ J/Kelvin)

NB. At 310K: ~ 1 in 10^6 excess protons in low energy state (1Tesla)
$\rightarrow N_1 - N_2 = N/2$ (N = no of spins)

Transitions between E_1 and E_2 induced by photons
$$h\nu = \Delta E$$

Increasing wavelength [nm]

Increasing frequency [s$^{-1}$]

Increasing energy

8-3. How to classically describe the motion of magnetization?

View each spin as a magnetic dipole μ (a tiny bar magnet).
Classically: torque τ of a dipole μ in B

$$\vec{\tau} = \mu \times \vec{B}$$

2nd law of rotations (P: angular momentum)
$$\vec{\tau} = \frac{d\vec{P}}{dt} \quad \vec{\mu} = \gamma \vec{P}$$
$$d\vec{\mu} = \vec{\tau} \times \vec{B}$$

Sum over all μ_k \rightarrow Magnetization $\vec{M} = \sum \mu_k$

Larmor equation
$$\frac{d\vec{M}}{dt} = -\gamma\vec{B} \times \vec{M}$$

What motion does the Larmor equation describe?

A brief tour back to rotational kinematics
$$\vec{v} = \text{circulates}$$
$$\frac{d\vec{r}}{dt} = \vec{\omega} \times \vec{r}$$
$$r_i \rightarrow \text{circulates}$$
$$\vec{r}_i \rightarrow \text{const}$$

Describes a rotation of r about ω
with frequency $f = \omega/2\pi$

\Rightarrow valid for any vector entity \vec{M}, \vec{L}
instead of \vec{r}

Precession of \vec{M} about \vec{B} with frequency $\gamma B/2\pi$
What is precession?

Observation: The motion of the axis of the wheel with mass M_W is circular about O with constant angular velocity Ω dictated by W_L.

$$\frac{dL}{dt} = \Omega \times \vec{L}$$

What is the value of Ω?

From Newton's 2nd law (rotations):

$$\frac{dL}{dt} = \vec{r} = -M_W \vec{g} \times \vec{r} = -M_W \frac{\vec{r} g}{r} = -\frac{M_W g}{r} \frac{\vec{L}}{L}$$

$$\frac{dL}{dt} = \frac{M_W g}{r} \frac{\vec{L}}{L} = \vec{L} = \Omega \vec{L}$$

\Rightarrow Precession frequency $\Omega = \frac{r}{L} \frac{M_W g}{L}$

Precession frequency increases with:
1. mass M_W of the wheel \rightarrow gyro magnetic ratio γ
2. gravitational pull g \rightarrow magnetic field B_0

Just like a spinning Gyroscope in gravity

$$\frac{dM}{dt} = -\gamma \vec{B}_0 \times \vec{M}$$

8-4. What are the essentials of Magnetic Resonance?

nucleus & magnetic field

Nuclear equilibrium magnetization M_0

$$M_0 = \left(N_2 - N_1 \right) \mu$$

$$N_2 = N/2$$

$$M_0 = \frac{h \mu}{4\pi kT} \gamma B_0 N$$

Magnetization increases with:
1. No. of spins N (molecules)
2. magnetic field B_0
3. gyromagnetic ratio γ

Nucleus with non-zero spin and high gyromagnetic ratio γ: 1H

Magnet to create magnetic field $B_0 \parallel z$

$\left(N_2 - N_1 \right) \mu_z$ results in equilibrium magnetization M_0

ΔE is small ($\sim \mu eV$)

\Rightarrow Non-ionizing e.m. fields

MRI: 1H_2O!

Larmor frequency

$$f_L = \frac{\gamma B_0}{2\pi}$$

$$\omega_L = \gamma B_0$$

Convention in magnetic resonance:

Static magnetic field $B_0 \parallel z$

\Rightarrow thermodynamic equilibrium: $M_0 \parallel z$

MR is safe, but insensitive
How can the sensitivity be increased?

magnetic field strength B_0

MRI of the lower abdomen

MRI of the breast (1.5 vs 3 Tesla)

maximum possible MR signal:
determined by
equilibrium nuclear magnetization M_0

8-5. Why use a Rotating frame of reference to describe the motion of magnetization?

Rotating frame: A reference frame which rotate about z of the laboratory frame at frequency ω_{RF}

Why use a rotating reference frame?

$$\frac{d}{dt} \vec{M} = \vec{M} \times \gamma \vec{B}$$
What is the equation of motion for magnetization in the rotating reference frame?

Larmor frequency in reference frame rotating with ω_{RF}: $\Omega = \omega_{\text{L}} - \omega_{\text{RF}}$

$\Rightarrow \Delta B = \Omega / \gamma = B_0 - \omega_{\text{RF}} / \gamma$
[lab frame: $\omega_{\text{RF}} = 0 \Rightarrow \Omega = \omega_{\text{L}} (\Delta B = B_0)$]

For $\omega_{\text{RF}} = \omega_{\text{L}}$, $\Delta B = 0$ (on-resonance):

\[
\begin{align*}
\text{Off-resonance} \\
\frac{dM}{dt} = \Omega \times M \\
\end{align*}
\]

(fictitious) magnetic field $\omega_{\text{RF}} / \gamma$ is progressively subtracted from B_0

On-resonance: $\Omega = 0$

\[
\Delta B
\]

Ex. Flipping magnetization over in the rotating reference frame

Start with thermodynamic equilibrium magnetization M_0
Reference frame rotating with ω_{L} (on-resonance)
Apply additional, constant magnetic field with magnitude B_1 (in xy plane) for time τ

What motion can be observed for M?

\[
\frac{dM}{dt} = -\gamma B_1 \times M
\]

M_0 precesses about B_1

Magnetization rotates about B_1 with angular velocity γB_1

Frequency $\gamma B_1 / 2\pi$

\Rightarrow period $T = 2\pi / \gamma B_1$

Definition Flip angle = angle of rotation α induced by B_1 applied for τ seconds

Special cases of α:

90°: Full excitation (all M_0 is rotated into transverse plane, xy, i.e. $M_0 \rightarrow M_{xy}$)

180°: Inversion ($M_z \rightarrow -M_z$)

B_1 = radiofrequency (RF) field (why?)

Lab frame: $B_1(t) = B_1(\cos \omega_{\text{L}}, \sin \omega_{\text{L}})$

$\gamma \approx 42$MHz/Tesla $\rightarrow \omega_{\text{L}} / 2\pi \approx 100$MHz
Supplement: Why there is only equilibrium magnetization along B_0?

Random Phase approximation

Quantized magnetic moment μ

\[
|\vec{\mu}| = \gamma \frac{h}{2\pi} \sqrt{J(J+1)}
\]

\[
\mu_z = \gamma \frac{h}{2\pi} \cdot m_z
\]

$\mu_z < \mu_{\text{tot}}$

Individual spin is never aligned with B_0 …

But … Equilibrium $M_0 \parallel B_0$

Phase ϕ of μ_{xy} is random (random phase approximation):

No net μ_{xy}

Bulk Nuclear Magnetization:

\[
\vec{M} = \sum \vec{\mu}
\]

Phase of μ_{xy}