SHAPE FROM X

One image:
- Texture
- Shading

Two images or more:
- **Stereo**
- Contours
- Motion
GEOMETRIC STEREO

Depth from two or more images:
- Geometry of image pairs
- Establishing correspondences
TRIANGULATION

Geometric Stereo: Depth from two images
EPIPOLAR LINE

Line on which the corresponding point must lie.
EPIPOLAR LINES

Three points shown as red crosses.

Corresponding epipolar lines.
EPIPOLAR LINES
EPIPOLE

Point at which **all** epipolar lines intersect:
- Located at the intersection of line joining optical centers and image plane.
There is 3 × 3 matrix F such that for all corresponding points x ↔ x'

\[x'^T F x = 0. \]

Therefore, the epipolar line corresponding to x is \(l = Fx \).

Given a set of n point matches, we write

\[
\begin{bmatrix}
 u_1'u_1 & u_1'v_1 & u_1' & v_1'u_1 & v_1'v_1 & v_1' & u_1 & v_1 & 1 \\
 u_n'u_n & u_n'v_n & u_n' & v_n'u_n & v_n'v_n & v_n' & u_n & v_n & 1 \\
\end{bmatrix} f = 0.
\]

→ DLT or non–linear minimization.

Hartley, Chap 9.
EPIPOLAR GEOMETRY

In general:

Parallel image planes

Horizontal baseline
RECTIFICATION

Parallel epipolar lines
Reprojection into parallel virtual image planes:

- Linear operation in projective coordinates
- Real-time implementation possible

\[
\begin{bmatrix}
U' \\
V' \\
W'
\end{bmatrix} = \begin{bmatrix}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & 1
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix}
\]

\[u' = \frac{U'}{W'}\]
\[v' = \frac{V'}{W'}\]
DISPARITY

Horizontal shift along epipolar line, inversely proportional to distance.
DISPARITY VS DEPTH

\[u_l = \frac{f(X - b/2)}{Z}, \quad v_l = \frac{fY}{Z} \]

\[u_r = \frac{f(X + b/2)}{Z}, \quad v_l = \frac{fY}{Z} \]

\[d = f \frac{b}{Z} \]

\[\rightarrow \text{Disparity is inversely proportional to depth.} \]
WINDOW BASED APPROACH

- Compute a cost for each C_n location.
- Pick the lowest cost one.
FINDING A PATTERN IN AN IMAGE

Straightforward Approach

Move pattern everywhere and compare with image.

But how?
SUM OF SQUARE DIFFERENCES

Subtract pattern and image pixel by pixel and add squares:

$$ssd(u,v) = \sum_{(x,y) \in N} [I(u + x, v + y) - P(x, y)]^2$$

If identical ssd=0, otherwise ssd >0

→ Look for minimum of ssd with respect to u and v.

Minimum ssd
CORRELATION

\[ssd(u,v) = \sum_{(x,y) \in N} [I(u + x, v + y) - P(x,y)]^2 \]

\[= \sum_{(x,y) \in N} I(u + x, v + y)^2 + \sum_{(x,y) \in N} P(x,y)^2 - 2 \sum_{(x,y) \in N} I(u + x, v + y)P(x,y) \]

Sum of squares of the window (positive term)
Sum of squares of the pattern (CONSTANT term)
Correlation

\[ssd(u,v) \text{ is minimized when correlation is largest} \]
\[\rightarrow \text{Correlation measures similarity} \]
SIMPLE EXAMPLE

\[I \text{ correlated with } P \]
NOT SO SIMPLE EXAMPLE

- Correlation value depends on the local gray levels of the pattern and image window.
- Need to normalize.
NORMALIZED CROSS CORRELATION

\[ncc(u,v) = \frac{\sum_{(x,y) \in N} [I(u + x, v + y) - \bar{I}][P(x, y) - \bar{P}]}{\sqrt{\sum_{(x,y) \in N} [I(u + x, v + y) - \bar{I}]^2 \sum_{(x,y) \in N} [P(x, y) - \bar{P}]^2}} \]

• Between -1 and 1
• Invariant to linear transforms
• Independent of the average gray levels of the pattern and the image window
NORMALIZED EXAMPLE

Image

Normalized Correlation

Pattern

Point of maximum correlation
SEARCHING ALONG EPIPOLAR LINES

ncc

or

ncc
OUTDOOR SCENE

scanline

SSD
NCCR
Repetitive patterns, textureless areas, and occlusions cause problems.
DISPARITY MAP

Black pixels: No disparity.
SHAPE FROM VIDEO

Treat consecutive images as stereo pairs.

1. Compute disparity maps.
2. Merge 3-D point clouds.
3. Represent as particles.

Fua. IJCV’97
OCCLUSIONS

→ Consistency test
GROUND LEVEL STEREO
COMBINING DISPARITY MAPS

- Merging several disparity maps.
- Smoothing the resulting map.

Fua, MVA’91
REAL-TIME IMPLEMENTATION

\[
C(x, y, d) \propto \frac{\sum_{i,j} I_1(x + i, y + j) \times I_2(x + d + i, y + j)}{\sqrt{\sum_{i,j} I_2(x + d + i, y + j)^2}}
\]

\[
C(x + 1, y, d) \propto \frac{\sum_{i,j} I_1(x + 1 + i, y + j) \times I_2(x + 1 + d + i, y + j)}{\sqrt{\sum_{i,j} I_2(x + 1 + d + i, y + j)^2}}
\]

\[
\propto \frac{\sum_{i',j} I_1(x + i', y + j) \times I_2(x + d + i', y + j)}{\sqrt{\sum_{i',j} I_2(x + d + i', y + j)^2}}
\]
\[C = \int s(w - w_0)^2 + \lambda_x \left(\frac{\partial w}{\partial x} \right)^2 + \lambda_y \left(\frac{\partial w}{\partial y} \right)^2 \]

\[s = \text{Correlation score if } w_0 \text{ has been measured, 0 otherwise.} \]

\[\lambda_x = c_x f \left(\frac{\partial I}{\partial x} \right) \]

\[\lambda_y = c_y f \left(\frac{\partial I}{\partial y} \right) \]

\[f(x) = \begin{cases}
1 & \text{if } x < x_0 \\
\frac{x_1 - x}{x_1 - x_0} & \text{if } x_0 < x < x_1 \\
0 & \text{if } x_1 < x \end{cases} \]
\[
\mathcal{C} = \sum_{ij} s_{ij} (w_{ij} - w_{0ij})^2 + \lambda_x \sum_{ij} (w_{i+1,j} - w_{i,j})^2 + \lambda_y \sum_{ij} (w_{i,j+1} - w_{i,j})^2
\]
\[
= (W - W_0)^t S(W - W_0) + W^t K W
\]
\[
\Rightarrow \frac{\partial \mathcal{C}}{\partial W} = 0
\]
\[
\Rightarrow (K + S)W = SW_0
\]
PRESERVING DISCONTINUITIES

\[\lambda_x = f\left(\frac{\partial I}{\partial x}\right) f\left(\frac{\partial w}{\partial x}\right)^2 \]

\[\lambda_y = f\left(\frac{\partial I}{\partial y}\right) f\left(\frac{\partial w}{\partial y}\right)^2 \]
THEN

1993: 256x256, 60 disps, 7 fps.
Faugeras et al., INRIA’93
AND MORE RECENTLY

Subaru's EyeSight System

2011:
1312x688, 176 disps, 160 fps.

Saneyoshi, CMVA’11
...AND EVEN MORE RECENTLY

Train Siamese nets to return a similarity score.

Zbontar and Lecun, 2015
COMPARATIVE RESULTS

Improved performance on test data but

- How well will it generalize to unseen images?

- Is it worth the much heavier computational load?

Time will tell.
WINDOW SIZE

Small windows:
• Good precision
• Sensitive to noise

Large windows:
• Diminished precision
• Increased robustness to noise

→ Same kind of trade-off as for edge-detection.
WINDOW SIZE

15x15 7x7
• Using a small window on a reduced image is equivalent to using a large one on the original image.

• Using difference of Gaussian images is an effective way of achieving normalization.

→ It becomes natural to use results obtained using low resolution images to guide the search at higher resolution.
FRONTO-PARALLEL ASSUMPTION

The disparity is assumed to be the same in the whole correlation window, which is equivalent to assuming constant depth.

Invalid assumption

Valid assumption

→ Ok when the surface faces the camera but breaks down otherwise.
MULTI-VIEW STEREO

Multi-view reconstruction setup

➢ Adjust correlation window shapes to handle orientation.

Furukawa&Ponce ECCV’06
SMALL DRONES

SenseFly: www.sensefly.com

Gatewing: www.gatewing.com
MATTERHORN

Drone: www.sensefly.com Mapping: www.pix4d.com
FACE RECONSTRUCTION

Beeler et al. SIGGRAPH’10
Dynamic Shape

Lightweight Binocular Facial Performance Capture under Uncontrolled Lighting

Levi Valgaerts\(^1\) Chenglei Wu\(^{1,2}\) Andrés Bruhn\(^3\)
Hans-Peter Seidel\(^1\) Christian Theobalt\(^1\)

\(^1\) MPI for Informatics
\(^2\) Intel Visual Computing Institute
\(^3\) University of Stuttgart

Valgaerts et al. SIGGRAPH Asia’12
SCENE FLOW

Correspondences across cameras and across time

Stereo Only Stereo + Flow
SHAPE FROM SHADING

Shape-from-shading is used to refine the shape and provide high-frequency details.
UNCERTAINTY
- Beyond a certain depth stereo stops being useful.
- Precision is inversely proportional to baseline length.
SHORT vs LONG BASELINE

Long baseline:
• Harder to match
• More occlusions
• Better precision

Short baseline:
• Good matches
• Few occlusions
• Poor precision
MARS ROVER

There are four cameras!
VIDEO-BASED MOTION CAPTURE

Fitting an articulated body model to stereo data.

Plankers & Fua, PAMI’03
TRINOCULAR STEREO
The Kinect camera projects an IR pattern and measures depth from its distortion. Same principle but the second camera is replaced by the projector.
MULTI-CAMERA CONFIGURATIONS

3 cameras give both robustness and precision

4 cameras give additional redundancy

3 cameras in a T arrangement allow the system to see vertical lines.
FACES FROM LOW-RESOLUTION VIDEOS

- No calibration data
- Relatively little texture
- Difficult lighting
SIMPLE FACE MODEL
$S = \bar{S} + \sum_{i=1}^{99} a_i S_i$

\bar{S}: Average shape

S_i: Shape vector

a_i: Shape coefficients

CORRESPONDENCES
TRANSFER FUNCTION

\[
F_3 (A, C_{i-1}, C_i, C_{i+1}) = \sum_{j \in Q_{i-1}} \| \Delta p_{i-1,j} \|_2^2 + \sum_{k \in Q_i} \| \Delta p_{i,i+1} \|_2^2
\]
MODEL BASED
BUNDLE ADJUSTMENT

→ Median accuracy greater than 0.5mm
MODEL FROM OLD MOVIE
LIMITATIONS OF WINDOW BASED METHODS

Left image

Right image

Ground truth

Correlation result
ENERGY MINIMIZATION

Disparity continuous in most places, except at depth discontinuities

1. Matching pixels should have similar intensities.
2. Most nearby pixels should have similar disparities

Minimize

$$\sum [I_2(x + D(x, y), y) - I_1(x, y)]^2$$

$$+ l \sum [D(x + 1, y) - D(x, y)]^2$$

$$+ m \sum [D(x, y + 1) - D(x, y)]^2$$
1. Stereo is a labeling problem
2. Graph cut corresponds to a labeling.

→ Assign edge weights cleverly so that the min-weight cut gives the minimum energy!
Construct a graph including

Nodes:
- Pixels (in first image)
- k discrete disparity values

Edges:
- From every pixel node to a depth node (data term)
- Neighboring nodes (smoothness)

Assign weights corresponding to pixel intensities to get a global cost function
Goal:

- Every pixel remains connected to one depth node.
 Edges between neighboring nodes only if they are connected to same depth node.

- Nodes are assigned the depth that they are connected to.
- Multiway cut is NP-complete, solve iteratively.
\textit{\(\alpha - \beta\) SWAP}

- Nodes labeled \(\alpha\) or \(\beta\) can switch their labels.

- Edges between neighbors are updated according to the new labeling.

- Other edges remain unchanged.

Boykov et al, ICCV ‘99
EXAMPLE: 1-2 SWAP

Connect the nodes labeled 1 or 2 to both labels
EXAMPLE: 1-2 SWAP

Mark 1 as source and 2 as sink

Find minimal cut
EXAMPLE: 1-2 SWAP

Erase edges that were on the cut

Result: a new labeling of the 1,2 nodes
EXAMPLE: 1-2 SWAP
1. Start with an arbitrary labeling
2. For every pair \{\alpha, \beta\} in \{1,\ldots,k\}
 - Find the \alpha-\beta swap that minimizes the function
 - Update the graph by adding and erasing edges
3. Quit when no pair improves the cost function
4. Induce pixel labels
- Nodes having a label different than α can either keep it or switch to α.

- Edges between neighbors are updated according to the new labeling.

- Other edges remain unchanged.

Boykov et al, ICCV ‘99
EXAMPLE: 3-EXPANSION

Connect all nodes to both 3 and 3
EXAMPLE: 3-EXPANSION

Mark 3 as source and 3 as sink

Find minimal cut
EXAMPLE: 3-EXPANSION

Erase edges that were on the cut

Result: 3-expansion
EXAMPLE: 3-EXPANSION
1. Start with an arbitrary labeling
2. For every label α in $\{1,\ldots,L\}$
 Find the α-Expansion that minimizes the function
 Update the graph by adding and erasing edges
3. Quit when no expansion improves the cost
4. Induce pixel labels
$\alpha-\beta$ SWAP vs α-EXPANSION

<table>
<thead>
<tr>
<th></th>
<th>Pair-Wise Penalty</th>
<th>Optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha-\beta$ Swap</td>
<td>Semi-metric</td>
<td>No guarantee</td>
</tr>
<tr>
<td>α-Expansion</td>
<td>Metric</td>
<td>Twice global optimum</td>
</tr>
</tbody>
</table>

- α-Expansion guarantees a solution whose energy is at most twice the global optimum but requires the pairwise term to satisfy the triangular inequality.

- $\alpha-\beta$ Swap offers no such guarantee but can deal with more generic pairwise terms.
NCC vs GRAPH CUTS

Normalized correlation Graph Cuts
NCC vs GRAPH CUTS

left image

true disparities

Normalized correlation

Graph Cuts
STRENGTHS AND LIMITATIONS

Strengths:
- Practical method for recovering depth.
- Runs in real-time on ordinary hardware.

Limitations:
- Requires multiple views.
- Only applicable to reasonably textured objects.