Networks Out Of Control: Evolution & Dynamics 3
Network Formation Games
Network Formation

- **Models for Networks:**
 - $G(n,p)$
 - $G(n,r)$
 - Lattice/Percolation
 - Watts-Strogatz

- **Commonalities:**
 - Defined by random processes.

- **Alternative mentality:**
 - Consider *motivations* of participants in the network, and model behavior as a function of these goals.
 - Will use game theory!
Games

- **Agents**: two or more participants.

- **Strategies**: options available to the agent.

- **Outcome**: global end result (function of all agent’s actions).

- **Utility**: real-valued function of outcome for a given agent.

In game theory:

- Agents want to maximize their own utility (selfish behavior)

- We study optimality, i.e., outcomes such that the average utility is maximized.

- We study equilibria, i.e., outcomes such that no agent benefits by changing their action.
Example: Coordination Game

- **2 Agents:** you and your friend
- **2 Strategies:** go to the Thai Food truck or go to the Pizza truck.
- **4 Outcomes:**

<table>
<thead>
<tr>
<th></th>
<th>Thai Food</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pizza</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Coordination Game

- **2 Agents:** you and your friend
- **2 Strategies:** go to the Thai Food truck or go to the Pizza truck.
- **4 Outcomes:**

Utilities:

<table>
<thead>
<tr>
<th></th>
<th>Thai Food</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Food</td>
<td>R1, C1</td>
<td>R3, C3</td>
</tr>
<tr>
<td>Pizza</td>
<td>R2, C2</td>
<td>R4, C4</td>
</tr>
</tbody>
</table>
Example: Coordination Game

- **2 Agents:** you and your friend
- **2 Strategies:** go to the Thai Food truck or go to the Pizza truck.
- **4 Outcomes:**

Utilities:

<table>
<thead>
<tr>
<th></th>
<th>Thai Food</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Food</td>
<td>3, 3</td>
<td>-1, -1</td>
</tr>
<tr>
<td>Pizza</td>
<td>-1, -1</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

- **Optimum:** outcome where the sum of the utilities is maximized
Example: Coordination Game

- **2 Agents:** you and your friend
- **2 Strategies:** go to the Thai Food truck or go to the Pizza truck.
- **4 Outcomes:**
- **Utilities:**

<table>
<thead>
<tr>
<th></th>
<th>Thai Food</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Food</td>
<td>3, 3</td>
<td>-1, -1</td>
</tr>
<tr>
<td>Pizza</td>
<td>-1, -1</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

- **Optimum:** outcome where the sum of the utilities is maximized
Example: Coordination Game

- **2 Agents:** you and your friend
- **2 Strategies:** go to the Thai Food truck or go to the Pizza truck.
- **4 Outcomes:**
- **Utilities:**

<table>
<thead>
<tr>
<th></th>
<th>Thai Food</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Food</td>
<td>3, 3</td>
<td>-1, -1</td>
</tr>
<tr>
<td>Pizza</td>
<td>-1, -1</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

- **Optimum:** outcome where the sum of the utilities is maximized
- **Stable:** outcome where no one wants to defect.
Example: Coordination Game

- **2 Agents:** you and your friend
- **2 Strategies:** go to the Thai Food truck or go to the Pizza truck.
- **4 Outcomes:**
- **Utilities:**

<table>
<thead>
<tr>
<th></th>
<th>Thai Food</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Food</td>
<td>3, 3</td>
<td>-1, -1</td>
</tr>
<tr>
<td>Pizza</td>
<td>-1, -1</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

- **Optimum:** outcome where the sum of the utilities is maximized
- **Stable:** outcome where no one wants to *defect.*
Example: Anti-Coordination Game

- **2 Agents:** you and your enemy
- **2 Strategies:** go to the Thai Food truck or go to the Pizza truck.
- **4 Outcomes:**
- **Utilities:**

<table>
<thead>
<tr>
<th></th>
<th>Thai Food</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Food</td>
<td>-10, 10</td>
<td>3, 0</td>
</tr>
<tr>
<td>Pizza</td>
<td>5, 0</td>
<td>-10, 10</td>
</tr>
</tbody>
</table>
Example: Anti-Coordination Game

- **2 Agents**: you and your enemy
- **2 Strategies**: go to the Thai Food truck or go to the Pizza truck.
- **4 Outcomes**:

- **Utilities**:

<table>
<thead>
<tr>
<th></th>
<th>Thai Food</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Food</td>
<td>-10, 10</td>
<td>3, 0</td>
</tr>
<tr>
<td>Pizza</td>
<td>5, 0</td>
<td>-10, 10</td>
</tr>
</tbody>
</table>

- **Optimum**: the sum of the utilities is maximized
Example: Anti-Coordination Game

◆ **2 Agents:** you and your enemy

◆ **2 Strategies:** go to the Thai Food truck or go to the Pizza truck.

◆ **4 Outcomes:**

◆ **Utilities:**

<table>
<thead>
<tr>
<th></th>
<th>Thai Food</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Food</td>
<td>-10, 10</td>
<td>3, 0</td>
</tr>
<tr>
<td>Pizza</td>
<td>5, 0</td>
<td>-10, 10</td>
</tr>
</tbody>
</table>

◆ **Optimum:** the sum of the utilities is maximized
Example: Anti-Coordination Game

- **2 Agents:** you and your enemy
- **2 Strategies:** go to the Thai Food truck or go to the Pizza truck.
- **4 Outcomes:**
- **Utilities:**

<table>
<thead>
<tr>
<th></th>
<th>Thai Food</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Food</td>
<td>-10, 10</td>
<td>3, 0</td>
</tr>
<tr>
<td>Pizza</td>
<td>5, 0</td>
<td>-10, 10</td>
</tr>
</tbody>
</table>

- **Optimum:** the sum of the utilities is maximized
- **Stable:** no one wants to *defect.*
Game Theory

- Any interaction can be modeled by a game
 - In particular: Networks!
Network Formation Games

- **Agents:** \(N = \{1, \ldots, n\} \)

- **Strategies:** A subset \(S_i \) of \(N \times N \) (potential edges)
 - We also refer to the strategy vector \(S = (S_1, S_2, \ldots, S_N) \).

- **Outcome:** A network \(G \) where \(V = N \) and \(E = \bigcup_i S_i \).

- **Utility:** real-valued functions \(u_i \) of the network \(G \).

- **Objectives:**
 - Agents select \(S_i \) in order to maximize \(u_i \) (selfish behavior)
 - We study optima: graphs \(G \) such that the sum of utilities is maximized.
 - We study stability: graphs \(G \) such that no agent wants to change their \(S_i \).
Network Formation Games

- **Local connection game (social networks)**
 - Agent can build edges from itself to other nodes (at a cost), and wants to be connected to all nodes via short paths.

- **Coauthor game (business/collaboration networks)**
 - Agents can partner together, but the more partners an agent has the less resources she has to put into the partnership.

- **Global connection game (infrastructure networks)**
 - Agents are no longer nodes, each agent wants to ensure some s-t path is built, and can build edges anywhere (at a shared cost).
Local Connection Game
Local Connection Game

- Local connection game (social networks)
 - Agent can build edges from itself to other nodes (at a cost), and wants to be connected to all nodes via short paths.

- Each of the n agents is a node.
 - The strategy space for node u is a subset S_u of V.
 - This corresponds to building uv edges for all v in S_u.
 - Each edge has a cost α
 - The total distance to other nodes (using all edges) also incurs a cost.
 - Overall, node u wishes to minimize:
 $\alpha n_u + \sum_v d(u,v)$
 where n_u is the number of connections u makes and $d(u,v)$ is the distance between u and v.

- The cost of the network is the sum of the costs of all agents:
 $\sum_u (\alpha n_u + \sum_v d(u,v))$
 $= \alpha m + \sum_{u,v} d(u,v)$
 where $m = |E|$.
Optimal Networks

- An optimal network minimizes:
 \[\alpha m + \sum_{u \neq v} d(u, v) \]

- Goal: Characterize optimal networks.

- Approach:
 - Lower bound the cost,
 - Give network(s) that attain the lower bound.

- Lemma: optimal networks
 - If \(\alpha \leq 2 \), then the complete graph is an optimal network.
 - If \(\alpha \geq 2 \), then the star network is an optimal network.
Stable Networks

- Recall: Node u wishes to minimize:
 $$\alpha n_u + \sum_v d(u,v)$$

- Goal: Find some stable networks

- Approach:
 - Is the complete graph stable?
 - Is the star graph stable?
 - Assume center node pays for all edges.
 - (in fact true for any star)

- Lemma:
 - If $\alpha \leq 1$, then the complete graph is stable.
 - If $\alpha \geq 1$, then the star graph is stable.
The Price of Stability is the ratio: \[
\frac{\text{value of best equilibrium}}{\text{value of optimal solution}}
\]

Lemma:
- If \(\alpha \geq 2 \), then the optimal network is a star.
- If \(\alpha < 2 \), then the optimal network is a complete graph.

Lemma:
- If \(\alpha \geq 1 \), then any star is a Nash equilibrium.
- If \(\alpha \leq 1 \), then the complete graph is a Nash equilibrium.

Theorem:
- For \(\alpha \geq 2 \) and \(\alpha \leq 1 \), the price of stability is 1.
- For \(1 < \alpha < 2 \)?
 - Recall: \(\text{opt value} \geq (\alpha - 2)m + 2n(n-1) \)
 - The price of stability is at most 4/3.
Price of Anarchy

The Price of Anarchy is the ratio: \[
\frac{\text{value of worst equilibrium}}{\text{value of optimal solution}}
\]

Lemma:
- If \(\alpha \geq 2 \), then the optimal network is a star.
- If \(\alpha < 2 \), then the optimal network is a complete graph.

Lemma:
- If \(\alpha \geq 1 \), then any star is a Nash equilibrium.
- If \(\alpha \leq 1 \), then the complete graph is a Nash equilibrium.
Exercise
Local Connection Game

- Show that for $\alpha < 1$ the complete graph is the unique equilibrium.
 - Does this imply anything about the price of anarchy?

- Construct a Nash equilibrium that is not a star for some N and some $\alpha > 2$.
Co-Author Game
Coauthor Game

- Coauthor game (business/collaboration networks)
 - Agents can partner together, but the more partners an agent has the less resources she has to put into the partnership.

- Each of the n agents is a node.
 - Nodes benefit from partnerships (direct edge connections) to others due to “collaboration”.
 - The amount a node benefits is inversely proportional to the amount of partnerships (i.e., degree) one has.
Coauthor Game

- Let n_i be the degree of node i

- Node i wishes to maximize:

$$u_i(g) = \sum_{j: ij \in g} \left[\frac{1}{n_i} + \frac{1}{n_j} + \frac{1}{n_i n_j} \right]$$

- If $n_i = 0$, $u_i(g) = 0$

- A network is optimal if it maximizes:

$$\sum_{i \in N} u_i(g) = \sum_{i: n_i > 0} \sum_{j: ij \in g} \left[\frac{1}{n_i} + \frac{1}{n_j} + \frac{1}{n_i n_j} \right],$$
Optimal Networks

A network is optimal if it maximizes:

\[\sum_{i \in N} u_i(g) = \sum_{i: n_i > 0} \sum_{j: i \neq j \in g} \left[\frac{1}{n_i} + \frac{1}{n_j} + \frac{1}{n_i n_j} \right], \]

Goal: Find an optimal network:

Approach:

First, upper bound \(\sum_{i \in N} u_i(g) \)

\[\sum_{i \in N} u_i(g) \leq 3N \]

Show some network attains this bound:

An optimal network on 2K agents consists of K pairs of nodes.

Is this network is an equilibrium?

No
Stable Networks

- Node i wishes to maximize:
 \[
 u_i(g) = \sum_{j: ij \in g} \left[\frac{1}{n_i} + \frac{1}{n_j} + \frac{1}{n_i n_j} \right] = 1 + \left(1 + \frac{1}{n_i} \right) \sum_{j: ij \in g} \frac{1}{n_j}.
 \]

- Node i would like to link to node j if:
 \[
 \frac{n_i + 2}{n_j + 1} \geq \frac{1}{n_i} \sum_{k: k \neq j, ik \in g} \frac{1}{n_k}.
 \]

- Assume that $n_j \leq n_i$,
 - Does i want to link to j?
 - Yes! What does this mean for stable networks?

- The only stable networks are complete networks.
Price of Stability / Price of Anarchy

- Recall: The optimal network has cost
 \[\sum_{i \in N} u_i(g) \leq 3\hat{N} \]

- Recall: The only stable networks are complete networks.

- The price of stability is:
 - Is > 1/3

- The price of anarchy is:
 - In this case, is the same!
Does this notion of stability make sense?

- We showed conditions under which \(i \) wants to connect to \(j \). Does \(j \) also want to connect to \(i \)?
- In some cases, the notion of stability may be incomplete.

- **Pairwise stability:**
 - For all \(ij \) in \(g \), we have \(u_i(g) > u_i(g-ij) \) and \(u_j(g) > u_j(g-ij) \).
 - For all \(ij \) not in \(g \), we have \(u_i(g) < u_i(g+ij) \) and \(u_j(g) < u_j(g+ij) \).

- **Theorem:** The pairwise-stable networks can be decomposed into fully connected components with no cross-component edges such that if the number nodes in each of the \(t \) components is \(k_1 > k_2 > \ldots > k_t \), then \(k_{i-1} > k_i^2 \).

- **Proof:** Similar analysis as before, but show that \(j \) in the smaller component only wants to connect to \(i \) if the above is satisfied.
In the local connection game, the more connections other agents build, the fewer connections we build.

This is a game of *strategic substitutes*.

In the coauthor game, the more connections other agents build, the more connections we build.

This is a game of *strategic complements*.
Global Connection Game
Global Connection Game

- Agents are no longer nodes in the network, external agents with some desire over global properties of the network.
 - For example, the vertices are neighborhoods and edges are roads, and you would like the path from your home to your office to be well-maintained.

- There are k agents, each with a source s_i and sink t_i node.
 - The strategy space for agent i is the set of all paths P from s_i to t_i.
 - We let P_i be the path she selects.
 - Let k_e be the number of agents using edge e:
 $$u_i = \sum_{e \in P_i} \frac{c_e}{k_e}$$

- The sum of the agents costs is
 $$\sum u_i = \sum_{e \in \text{some } P_i} c_e .$$

- Maximizing this quantity is known as the Steiner tree problem.
Price of Anarchy

- For the given example:
 - What is the optimal solution?
 - What are the equilibria?
 - What is the price of anarchy?
 - What is the price of stability?

- Theorem: In any global connection game, the price of anarchy is at most k.
 - Proof:
 - Let S be a stable network and S^* be an optimal network,
 - Let w_i be the weight of the shortest path from s_i to t_i, and let $w(P_i^*)$ be the weight of the path the optimal solution selects for i.

- What about the price of stability?
Price of Stability

- For the given example:
 - What is the optimal solution?
 - What are the equilibria?
 - What is the price of stability?

- Theorem:
The price of stability is always at most H_k.

- Proof: Potential Method for Games
Theorem: A pure Nash equilibrium always exists and the price of stability is at most H_k.

Potential function method:
- Define a function on edges $\Phi_e = c_e H_{ke}$ and $\Phi = \Sigma_e \Phi_e$.
- If i unilaterally changes its strategy to S', then can show that
 \[\Phi(S) - \Phi(S') = u_i(S') - u_i(S) \]
 (this is called a potential function).
- Can also show that:
 \[\text{cost}(S) \leq \Phi(S) \leq H_k \text{cost}(S) \]

Theorem: A strategy that minimizes Φ is stable.

Theorem: If $A \text{cost}(S) \leq \Phi(S) \leq B \text{cost}(S)$, then the price of stability is at most B/A.

Price of Stability
Local Connection Game:
The Price of Anarchy
Price of Anarchy

- The Price of Anarchy is the ratio: \(\frac{\text{value of worst equilibrium}}{\text{value of optimal solution}} \)

- Lemma:
 - If \(\alpha \geq 2 \), then the optimal network is a star.
 - If \(\alpha < 2 \), then the optimal network is a complete graph.

- Lemma:
 - If \(\alpha \geq 1 \), then any star is a Nash equilibrium.
 - If \(\alpha \leq 1 \), then the complete graph is a Nash equilibrium.

- Theorem: The price of anarchy is at most \(O(\sqrt{\alpha}) \).
 - Bound the diameter of an equilibrium graph.
 - Use this to bound the price of anarchy.
Price of Anarchy

- An optimal network minimizes:
 \[\alpha |E| + \sum_{u \neq v} d(u,v) \]

- Theorem: The price of anarchy is at most \(O(\sqrt{\alpha}) \).
 - Bound the diameter of an equilibrium graph.
 - Use this to bound the price of anarchy.

- Lemma: If a Nash equilibrium has diameter \(d \), then its cost is at most \(O(d) \) times optimal.
Theorem: The price of anarchy is at most $O(\sqrt{\alpha})$.
- Bound the diameter of an equilibrium graph.
- Use this to bound the price of anarchy.

Lemma: If a Nash equilibrium has diameter d, then its cost is at most $O(d)$ times optimal.

Lemma: The diameter of a Nash equilibrium is at most $2\sqrt{\alpha}$.

Theorem: Price of anarchy is $O(1)$ when α is $O(\sqrt{n})$.