Problem 1. Prove that for any five points selected inside an equilateral triangle with side length equal to 1, there always exists a pair whose distance is $\leq 1/2$.

Problem 2. Let a_i for $i \geq 0$ be an arithmetic progression with initial term a and common difference d, and let g_i for $i \geq 0$ be a geometric progression with initial term g and common ratio r. To avoid trouble we assume $a > 0, d > 0, g > 0, r > 0$, and $r \neq 1$. In class we have seen the closed formulas $\sum_{i=0}^{k} a_i = (k+1)(a + \frac{dk}{2})$ and $\sum_{i=0}^{k} g_i = \frac{g(r^{k+1} - 1)}{r - 1}$ for the summations of arithmetic and geometric progressions. Find closed formulas for the following summations:

1. $\sum_{i=1}^{k} (a_i - a_{i-1})$
2. $\sum_{i=1}^{k} (g_i - g_{i-1})$
3. $\sum_{i=0}^{k} a_i g_i$
4. $\sum_{i=0}^{k} \frac{a_i}{g_i}$

Problem 3. For the integers i with $1 \leq i < 6$ let M_i be an $s_i \times s_{i+1}$ matrix over the real numbers. Furthermore, let

$$P_3 = M_1 \cdot M_2 \cdot M_3$$
$$P_4 = M_1 \cdot M_2 \cdot M_3 \cdot M_4$$
$$P_5 = M_1 \cdot M_2 \cdot M_3 \cdot M_4 \cdot M_5.$$

In this exercise we consider how to compute P_j given the M_i-matrices, where we assume that we use traditional matrix multiplication, requiring kmn multiplications of real numbers (plus additions, which we do not count) to multiply a $k \times m$ matrix and an $m \times n$ matrix.

1. Show for $j = 3, 4, 5$ that P_j is a well-defined $s_1 \times s_{j+1}$ matrix over the real numbers.

2. To compute $P_3 = M_1 \cdot M_2 \cdot M_3$, we can first compute $M_{1,2} = M_1 \cdot M_2$ and then calculate P_3 as $M_{1,2} \cdot M_3$; or we can first compute $M_{2,3} = M_2 \cdot M_3$ and then
calculate P_3 as $M_1 \cdot M_{2,3}$. We refer to these two different ways of computing P_3 as two different ways to \textit{parenthesize} the expression $M_1 \cdot M_2 \cdot M_3$, namely as

$$(M_1 \cdot M_2) \cdot M_3$$

for the first way to compute P_3 and

$$M_1 \cdot (M_2 \cdot M_3)$$

for the second way. Counting multiplications in \mathbb{R}, which of the two ways is the “best” (smallest total number of multiplications), if $s_i = s_{i-1} + 1$ for $i \geq 2$?

3. Assuming we want to calculate just P_4 (so, we are not interested in P_3), in how many different ways can the expression for P_4 be parenthesized? Which one is the best, and which one is the worst, if $s_1 = 3, s_2 = 6, s_3 = 4, s_4 = 1, s_5 = 2, s_6 = 7$ for $i \geq 2$?

4. Assuming we want to calculate just P_5 (so, we are not interested in P_3 or P_4), in how many different ways can the expression for P_5 be parenthesized?

\textbf{Problem 4.} The following two algorithms sort the input sequence a_0, a_1, \ldots, a_n of real numbers in ascending order:

\begin{align*}
\textbf{Algorithm 1 Selection Sort} \\
&\text{for } i = 0 \text{ to } n - 1 \text{ do} \\
&\quad min := i + 1 \\
&\quad \text{for } j = i + 1 \text{ to } n \text{ do} \\
&\quad \quad \text{if } a_{min} > a_j \text{ then} \\
&\quad \quad \quad min := j \\
&\quad \text{end if} \\
&\text{end for} \\
&\text{if } a_i > a_{\text{min}} \text{ then} \\
&\quad \text{swap } a_i \text{ and } a_{\text{min}} \\
&\text{end if} \\
&\text{end for}
\end{align*}

\begin{align*}
\textbf{Algorithm 2 Insertion Sort} \\
&\text{for } j = 1 \text{ to } n \text{ do} \\
&\quad i := 0 \\
&\quad \text{while } a_j > a_i \text{ do} \\
&\quad \quad i := i + 1 \\
&\quad \text{end while} \\
&\quad m := a_j \\
&\quad \text{for } k = 0 \text{ to } j - i - 1 \text{ do} \\
&\quad \quad a_{j-k} := a_{j-k-1} \\
&\quad \text{end for} \\
&\quad a_i := m \\
&\text{end for}
\end{align*}

1. Use Selection Sort to sort the sequence

$$9, 12, -43, 20, -2, 3, 7, 28, 19$$

and write down each step of the algorithm. Then, do the same with Insertion Sort.

2. What is the approximate overall cost of the two algorithms for an input sequence of length $n + 1$?

\textbf{Problem 5.} Let $f(n) = a_k n^k + a_{k-1} n^{k-1} + a_{k-2} n^{k-2} + \cdots + a_1 n + a_0$ for some positive integer k and real numbers a_0, a_1, \ldots, a_k. Show that $f(n)$ is $O(n^k)$. (\text{Hint}: Use the triangle inequality $|a + b| \leq |a| + |b|$.)

2