Independent Component Analysis

Exercise 1

In class, it was argued that a mixture of statistically independent sources tends to be more Gaussian than the sources themselves. This argument served as the basis for ICA algorithms that rely on non-Gaussianity. In this exercise, we want you to show that the non-Gaussianity argument does not rely on the summation of a large number of statistically independent sources, but that it works already for two sources. Remember that the kurtosis is defined as

$$\kappa(x) = \mathbb{E}[x^4] - 3\mathbb{E}[x^2]^2.$$

1.1 Show that the kurtosis of $y = x_1 + x_2$ is given by $\kappa(y) = \kappa(x_1) + \kappa(x_2)$.

1.2 Show that the kurtosis of $y = \alpha x$ with $\alpha \in \mathbb{R}$ is given by $\kappa(y) = \alpha^4 \kappa(x)$.

1.3 Use 1.1 and 1.2 to show that the kurtosis of $y = \sqrt{a}x_1 + \sqrt{1-a}x_2$, $a \in [0,1]$, is given by

$$\kappa(y) = a^2 \kappa(x_1) + (1-a)^2 \kappa(x_2).$$

1.4 Let $\kappa(x_1) = c$ and $\kappa(x_2) = d$ be the kurtoses of x_1 and x_2. Assume that both signals are super-Gaussian and that $0 < c < d$. Show that the kurtosis of the mixture $y = \sqrt{a}x_1 + \sqrt{1-a}x_2$ has maxima for $a = 0$ and $a = 1$, and that $a = 0$ is the global maximum.

1.5 Which value(s) of a maximize the kurtosis if the signals x_1 and x_2 are sub-Gaussian: $c < d < 0$?

Exercise 2

Consider an ICA algorithm that aims at maximizing $J(\vec{w}) = \langle F(y) \rangle$, where $y = \vec{w}^T \vec{x}$ and $F(y) = \frac{1}{2} \log \cosh(ay)$. The maximization is done by gradient ascent.

2.1 Show that: $\frac{dF}{dy} = \tanh(ay)$.

2.2 Calculate $\frac{dF}{d\vec{w}_j}$ for $y = \sum_k w_kx_k$.

2.3 Show that a gradient ascent on $J(\vec{w}) = \langle F(\vec{w}^T \vec{x}) \rangle$ leads to a Hebbian rule. (Hint: Make the transition from a batch rule to an online rule.)
Exercise 3

In the previous exercise, we discussed a simple ICA algorithm based on gradient ascent. Here, we will go one step further and maximize the non-Gaussianity of the mixture using the Newton method, that yields a faster convergence. The resulting learning algorithm is known as fastICA.

3.1 We want to maximize the measure of non-Gaussianity \(F \) under the constraint of a normalized weight vector, i.e. \(\vec{w}^T \vec{w} = 1 \). This corresponds to finding the maximum of the function \(J(\vec{w}) = \langle F(\vec{w}^T \vec{x}) \rangle \). Derive the Taylor expansion \(J^*(\vec{w}) \) of \(J(\vec{w}) \) around \(\vec{w}_0 \) up to second order in \(\vec{w} \).

3.2 A Newton step consists of setting the next value \(\vec{w}_{\text{new}} \) to the vector that maximizes the second-order approximation \(J^* \) around the previous weight vector \(\vec{w}_0 \). Show that this leads to the fastICA update rule:

\[
\vec{w}_{\text{new}} = \langle g(\vec{w}_0^T \vec{x}) \vec{x} \rangle - \langle g'(\vec{w}_0^T \vec{x}) \rangle \vec{w}_0,
\]

with \(g := \frac{dJ(y)}{dy} \) and \(g' = \frac{dg(y)}{dy} \).

(Hint: Make the approximation that \(\langle g'(\vec{w}_0^T \vec{x}) \vec{x} \vec{x}^T \rangle \approx \langle g'(\vec{w}_0^T \vec{x}) \rangle \cdot \langle \vec{x} \vec{x}^T \rangle \) and exploit the fact that the data is pre-whitened, \(\langle \vec{x} \vec{x}^T \rangle = E \) with identity matrix \(E \). Finally, remember that the weight vector gets re-normalized to unity in the fastICA algorithm after the above update rule is applied.)

Exercise 4

In this exercise we see that PCA extracts the direction of maximum variance: For a zero-mean data set \(D = x_1, ..., x_N \), try to find a direction \(\text{vec} \vec{w} \) for which the variance of the projected elements \(\vec{y} = \vec{w}^T \vec{x} \) has maximum variance. You should write an optimization problem with constraint \(\|\vec{w}\| = 1 \) where \(\|\cdot\| \) denotes the vector norm and use Lagrange multiplier method to solve it.

Hint: In mathematical optimization, the method of Lagrange multipliers provides a strategy for finding the local maxima and minima of a function subject to equality constraints. Consider the optimization problem: maximize \(f(\vec{w}) \) subject to \(g(\vec{w}) = c \). We need both \(f, g \) to have continuous first partial derivatives. In this method, a new variable \(\lambda \) called a Lagrange multiplier is introduced and the Lagrange function defined by \(L(\vec{w}, \lambda) = f(\vec{w}) - \lambda(g(\vec{w}) - c) \) is studied. If \(\vec{w}_0 \) is a maximizer of \(f(\vec{w}) \) for the original constraint problem, then there exists \(\lambda_0 \) such that \((\vec{w}_0, \lambda_0) \) is a stationary point for the Lagrange function \(L \). Stationary points are those points where the partial derivatives of \(L \) are zero.

Exercise 5

Assume that a set of signals \(y^i_t \) are statistically independent (and have zero mean) and that consequently, their time-delayed covariance matrix is diagonal: \(C = \langle y^i_t (y^j_{t-\tau})^T \rangle = \lambda_i(\tau) \delta_{ij} \). Show that for any matrix \(R \), the time-delayed covariance matrix \(\hat{C}^* \) of the signals \(\hat{x}^i = R^T y^i \) is symmetric.