Characteristics of Biconical Antennas Used for EMC Measurements

Mohsen Koohestani
koohestani.mohsen@epfl.ch
Outline

• State-of-the-art of EMC Antennas
• Biconical Antenna
• Analytical Procedure
• Calculation of Antenna Factor
• Inclusion of a Balun
• Ground Effects
• Conclusion
EMC Antennas

- **Double Ridged Waveguide Horn Antenna**
 - Frequency Range: 200 MHz - 2.5 GHz
 - 6 dB Gain Improvement at 2 GHz
 - Maintains Single Lobe Radiation Pattern
 - Low VSWR over entire frequency band
 - Connector: N-type female

- **Shielded Active Loop Antenna**

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>10 kHz - 30 MHz</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>85 dB @ 10 kHz</td>
</tr>
<tr>
<td></td>
<td>125 dB @ 1 MHz</td>
</tr>
<tr>
<td>Sensitivity (Typical)</td>
<td>-1 dB (uA/m) @ 10 kHz</td>
</tr>
<tr>
<td></td>
<td>-42 dB (uA/m) @ 1 MHz</td>
</tr>
<tr>
<td>1 dB Compression Point</td>
<td>5 V/m</td>
</tr>
<tr>
<td>Power Required</td>
<td>13.8 VDC</td>
</tr>
<tr>
<td>Impedance (Nominal)</td>
<td>50 ohms</td>
</tr>
<tr>
<td>Connector</td>
<td>BNC female</td>
</tr>
</tbody>
</table>
EMC Antennas

- **Conical Log Spiral Antenna**
 - Frequency Range: 200 MHz - 1 GHz
 - VSWR: 2.4:1
 - CW power: 100 Watt / peak power: 150 Watt
 - Impedance: 50 Ohm
 - Polarization: Circular
 - Connector: N-type female

- **Log-periodic Dipole Array Antenna**
 - Frequency Range: 80 MHz - 2 GHz
 - VSWR: 1.2:1
 - CW power: 1000 Watt
 - Impedance: 50 Ohm
 - Connector: N-type female

EMC Antennas

- **Mini-Bicon Antenna**
 - Frequency Range
 - VSWR: ~ 5:1
 - Maximum CW power
 - Impedance: 50 Ohm
 - Connector: N-type female
 - Cage Elements: 30 MHz - 1 GHz
 - Cone Elements: 30 MHz - 3 GHz

- **Biconical Antenna**
 - Frequency Range: 20 MHz - 300 MHz
 - VSWR: 2.8:1
 - CW power: 50 Watt / peak power: 100 Watt
 - Impedance: 50 Ohm
 - Connector: N-type female
 - Cage Elements: 200 Watt
 - Cone Elements: 50 Watt

Source: http://www.ets-lindgren.com/EMCAntennas
Biconical Antenna – Geometry and physical dimensions

Side View

End View

Cone separation $\delta = 87$ mm
Cone length $l = 603.5$ mm
Wire radius $a = 3$ mm.
Biconical Antenna – NEC simulation model

NEC model of the antenna showing tapered segmentation scheme

<table>
<thead>
<tr>
<th>Wire No.</th>
<th>Length mm</th>
<th>No. of segments</th>
<th>Segment lengths $/\lambda$ at 300 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>522.646</td>
<td>10</td>
<td>0.0523</td>
</tr>
<tr>
<td>2</td>
<td>301.750</td>
<td>5</td>
<td>0.0604</td>
</tr>
<tr>
<td>3</td>
<td>603.500</td>
<td>11</td>
<td>0.0549</td>
</tr>
<tr>
<td>4</td>
<td>87.000</td>
<td>3</td>
<td>0.0290</td>
</tr>
</tbody>
</table>

Total number of segments = 205

Initial segmentation scheme used for the Biconical antenna
Biconical Antenna – Input impedance

Measured and simulated impedance components of the antenna horizontally polarized at a height of 1.5 m above the ground.
Biconical Antenna – Dimensions’ Optimization

Measured impedance components of the Biconical antenna and predictions from a model with shortened cone lengths
Segmentation schemes used for the Biconical antenna and their corresponding cone resonant frequencies

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Number of segments</th>
<th>Cone resonant frequency / MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wire 1</td>
<td>Wire 2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>
Biconical Antenna – Input impedance

Measured drive-point impedance components of the Biconical antenna and predictions from the optimized NEC model.
Analytical Procedure – Various wire radii

Simulated input impedance of a half length antenna for various wire radii
(□ = 0.1, + = 0.25 mm, ◊ = 0.5 mm, ▲ = 1 mm, x = 2 mm, and ▼ = 3 mm).
Antenna Factors - Calculation

- Determination of the relationship between the voltage delivered by the antenna to its load impedance

\[AF = \frac{E}{V_r} \]

\[E: \text{incident field strength at the antenna} \]
\[V_r: \text{voltage at the input of the measuring receiver} \]

\[P_r = \frac{V_r^2}{R_r} \]
\[P_r = A_e S_{av} \]
\[P_r = \frac{MG_r(\theta, \phi) \lambda^2}{4\pi Z_o} \]
\[A_e = \frac{MG_r(\theta, \phi) \lambda^2}{4\pi} \]
\[S_{av} = \frac{E^2}{Z_o} \]
\[M = 1 - \frac{P_{refl}}{P_{fwd}} = 1 - |\rho|^2 \leq 1 \]

\[AF (dB \ m^{-1}) = 19.76 - 20 \log \lambda - G_r (dB) - M (dB) \]
Variation with frequency of the computed antenna factor (-), antenna gain $\theta=90$ and $\phi=0$ (+) and mismatch loss (◊) as well as the measured antenna factor (▲).
Inclusion of a Balun

- Use of jigs pair to mount N-type connectors in place of the cones of the antenna

Diagram showing how jigs were used to mount N-type connectors on the antenna support.
Inclusion of a Balun

- Balun can either increase or reduce its antenna factor according to the precise frequency of excitation.

Predicted antenna factors for the Biconical antenna with and without its balun
Ground Effects on the antenna factor

- Effect on the antenna factor

\[Z_{IN} = Z_{11} + \frac{I_2}{I_1} Z_{12} \]

- \(Z_{11} \): antenna impedance in free space
- \(Z_{12} \): mutual impedance between the antenna and its image in the ground plane

Mutual impedance between the Biconical antenna and its image for both horizontal and vertical orientation. (\(R_{12} \), + \(X_{12} \))
Ground Effects on the antenna factor

- Antenna factor is virtually independent of height above 140 Mhz.
- There is noticeable height dependence in antenna factor below 120 MHz.
- The significant difference is with horizontal antenna at 20 MHz, whereas the vertical antenna shows variation less than 3dB in antenna factor for 1 to 4 m heights.

Computed antenna factors for horizontal and vertical orientation at various heights above the ground plane (- free space; + 1 m; ♦ 2 m; △ 3 m; × 4 m).
Ground Effects on the radiation pattern

- Comparing pattern of a dipole antenna above the ground to the Biconical antenna indicates any pattern differences caused by current asymmetry in the Biconical antenna.

![Graphs showing normalized pattern at 260 MHz for the antenna at 1 m (left) and 4 m (right) above the ground plane.](image)

Normalized pattern at 260 MHz for the antenna at 1 m (left) and 4 m (right) above the ground plane
Antenna Current distribution

- Significant pattern distortion can occur at some frequencies when a horizontal wire Biconical antenna is used close to the ground.

Magnitude and phase of the currents at the widest points of the antenna elements when 1 m above the ground plane.
Conclusion

• Antenna factor is dependent on both the antenna's polarization and height above the ground plane.

• Radiation pattern measurements above 200 MHz should be made due to the distortion occurrence.

• The antenna results will allow this broadband antenna to be used with confidence in applications where previously only resonant dipoles were specified.
References

Thank you for Your Attention

Questions