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Shape from X

e One image:
e Shading
e Texture

e Two images or more:
e Stereo
e Contours
e Motion
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e One image:
e Shading
e Texture

e Two images or more:
e Stereo
e Contours
e Motion
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Recover surface orientation or surface shape from
Image texture:

o Assume texture ‘looks the same’ at different points
on the surface.

e This means that the deformation of the texture is
due to the surface curvature. !
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Structural Shape Recovery

‘ asic hypothesis: Texture
resides on the surface and has

o thickness.

N

> Computation under:

3 A

e Perspective projection

e Paraperspective projection
e Orthographic projection
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Reminder: Perspective Projection
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Perspective Distortion

Center of Frontaf

Projection |04 Prane
Scaling H Plane
of the /
Frontal Piane
in the Image

Foreshortening
of the .
Longitudinal Plane
in the Image

Longitudinal Plane

The perspective projection distortion of the texture
e depends on both depth and surface orientation,
e |s anisotropic.

PFL A
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Foreshortening

Depth vs Orientation:
e Infinitesimal vector [AXx,Ay,Az] at location [x,y,z]m
image of this vector is :

L iax— XAz Ay -2 Az

Z Z Z
 Two special cases:
° A7=0 The object is scaled - . 1
* AX=Ay=0 : The object is foreshortened
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Reminder: Orthographic Projection

Y & /
Scating I e
Orthographic
Center of Age /

il Projection
Projection

Special case of perspective projection:

e Large f

e Objects close to the optical axis
—>Parallel lines mapped into parallel lines.
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Orthographic Projection
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Tilt And Slant

¥
/ Projection

{ Oirection

image
Plane




Orthographic Projection

e Tilt: Derived from the

(z, T image direction in which

?%/7 e i“"’“':ﬁf:( | the surface element

TN undergoes maximum
compression.

Direic f Til:Si f:! N Stant v, —cos’'{bfa) -
5/ e Slant: Derived from the
/ extent of this compression.
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Cheetah

=Pr-L A.M. Low, Phd Thesis, 2006
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Perpendicular Lines

@ """ ®
S sk ot

Orthographic projections of squares that
are rotated with respect to each other in a
plane inclined at w=60° to the image plane.

IP1/LXPo/LIl - cos(w)

2 1+ cos2(w) ﬂ




Parapespective Projection

/ Object
* gt ':':4:: e Arallel
X Projection

P scating

gl it i z
\\ |
Center of A .

Projection

Generalization of the orthographic projection:

e Object dimensions small wrt distance to the
center of projection.

- Parallel projection followed by scaling
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Parapespective Projection

(xr.- + 'ﬁxo* _}’.l? + A..Yoa 2o + "izn}

Parallel Projection in
—[Xo Yo Z») Direction V

Scaling L \//
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® FOI‘ pla na r tEXGlSl Unknown surface normal.
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Parapespective Projection
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B = = - -
e s -
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ceers 71 Texels:

- -

-~ =z F =

; ‘ :2133%%%% e Image regions being brighter or

F Weews (23333557 darker than their surroundings.
e 5 e e R

£ "E; » % -22-+%% e Assumed to have the same area
“Hges s2lec% e inspace.

- Given enough texels, it
becomes possible to estimate

the normal.
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Texture Gradient




Statistical Shape Recovery

Mesure texture density as opposed to
" texel area, that is, the number of textural
___ primitives per unit surface.

¥
f & 0

Unknown surface normal. ' N
b — _bl, c ooy bn

] Image coordinates.

@bn Function of density.
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Machine Learning
| @

—pr=| Train a regressor to predict depth —> Noisy predictions A




Markov Random Field (MRF)

Graph with vertices and edges

Assign values to the nodes to minimize
E(Y)= D000+ D0 1)

(1,))

unary pairwise

cpr| —> Enforces consistency
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Deep Learning with MRF

Input image x Supperpixel

image patch

Shared network

parameters 6 (unary)__

Predicted depth map y

. o — — —— — — ———————————————

| I
o > Sconv +4fc = P i i
i |
' |
> 5conv +4 fc = I :
i
! :
x |
> Sconv +4fc = | |
|
| : |
A2 ! I
9 A ¢ ’ 1 I
T P ] ——— | — §
y* = argmax Pr(y|x)
y
Neighbouring superp1xel " - - R y Y Y
pairwise similarities: [gpq)- i o S,()q\ )]T Kx1 T 1x1 Pq | ' o
» C Negative log-likelihood:
1
e > 1 1x1 o] —log Pr(y|x) = —log Z(x) exp{—E(y,x)},
Kx1 ST | ix2 J where E(y,x) Z U( Up Z "'(yp.yq.x))
B pEN (p.9)€S
E E = Z(I/p - “]l Z qu Yp — l/q
e J pEN (p.q) Eq
Shared network

Liu et al., PAMI 2016




Enforcing Task Congist;tency
ep

Normals

e A network can be trained to predict multiple things.
e Forcing consistency across tasks increases robustness. !

=Pr-L Zamir et al. , CVPR’20




A Very Diverse Training Database Helps




.. and so does a Transformer Architecture

Originalimages  Selected input patches : Masked targets
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Using Transformers

MiDaS (MIX 6) DPT-Hybrid

e Pros: Good at modeling long range relationships.

e Cons: Flattening the patches looses some amount of information.
=PFL Ranftl etal., CVPR’21 A




Optional: lllusory Shape Distorsion
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People seem to be sensitive to orientation fields
in the cases of both texture and shading.

=PrL Flemming et al. PNAS’10 A
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Optional: Shape from Smear

Hypothesis: If orientation and scale fields are the key
source of information for 3D shape perception, it should be
possible to induce a vivid sense of 3D shape by creating 2D
patterns with appropriate scale and orientation fields.

Test: Use a technique known as Line Integral Convolution to
smear the texture along specific orientations and scale

appropriately.

Flemming et al. PNAS’10 A




Optional: Scaling and Smearing

Scaling:

Smearing:
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Optional: Inconsistent Stimulus

The orientation field cannot be integrated
> No depth perception.

> Do we integrate in our heads?

> [s this what the deep nets learn to do?

=PrL A
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Strengths and Limitations

Strengths:
Emulates an important human ability.

Limitations:
Requires regular texture.
Involves very strong assumptions.
Deep learning can be used to weaken them.
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