Shape from X

- One image:
- Shading
- Texture
- Two images or more:
- Stereo
- Contours
- Motion

Shape From X

- One image:
- Shading - Texture
- Two images or more:
- Stereo
- Contours
- Motion

Shape From Texture

Recover surface orientation or surface shape from image texture:

- Assume texture 'looks the same' at different points on the surface.
- This means that the deformation of the texture is due to the surface curvature.

Structural Shape Recovery

Basic hypothesis: Texture resides on the surface and has no thickness.

\rightarrow Computation under:

- Perspective projection
- Paraperspective projection
- Orthographic projection

Reminder: Perspective Projection

$$
\begin{aligned}
& u=f \frac{x}{z} \\
& v=f \frac{y}{z}
\end{aligned}
$$

Perspective Distortion

The perspective projection distortion of the texture

- depends on both depth and surface orientation,
- is anisotropic.

Foreshortening

Depth vs Orientation:

- Infinitesimal vector $[\Delta x, \Delta y, \Delta z]$ at location $[x, y, z]$ image of this vector is

$$
\frac{f}{z}\left[\Delta x-\frac{x}{z} \Delta z, \Delta y-\frac{y}{z} \Delta z\right]
$$

- Two special cases:
- $\Delta z=0 \quad: \quad$ The object is scaled

The object is foreshortened
EPFL

Reminder: Orthographic Projection

Special case of perspective projection:

- Large f
- Objects close to the optical axis
\rightarrow Parallel lines mapped into parallel lines.

Orthographic Projection

Tilt And Slant

Orthographic Projection

(a)

(b)

- Tilt: Derived from the image direction in which the surface element undergoes maximum compression.
- Slant: Derived from the extent of this compression.

Cheetah

Perpendicular Lines

Orthographic projections of squares that are rotated with respect to each other in a plane inclined at $\omega=60^{\circ}$ to the image plane.

$$
\frac{\left\|\mathbf{p}_{1} / l_{1} \times \mathbf{p}_{2} / l_{2}\right\|}{2}=\frac{\cos (\omega)}{1+\cos ^{2}(\omega)}
$$

Parapespective Projection

Generalization of the orthographic projection:

- Object dimensions small wrt distance to the center of projection.
\rightarrow Parallel projection followed by scaling

Parapespective Projection

- For planar texels:

Unknown surface normal.

Parapespective Projection

(b)

(c)
(a)

Image regions being brighter or darker than their surroundings. Assumed to have the same area in space.
\rightarrow Given enough texels, it becomes possible to estimate the normal.

Texture Gradient

Statistical Shape Recovery

Mesure texture density as opposed to texel area, that is, the number of textural primitives per unit surface.
Assuming the texture to be homogeneous, we have:

Unknown surface normal.

$$
\begin{aligned}
\psi \mathbf{n} & \propto \mathbf{b} \\
\psi & =\left[\begin{array}{ccc}
u_{1} & v_{1} & 1 \\
\ldots & \ldots & \ldots \\
u_{n} & v_{n} & 1
\end{array}\right]^{t} \\
\mathbf{b} & =\left[b_{1}, \ldots, b_{n}\right]^{t} \\
\Rightarrow \mathbf{n} & =\frac{\psi \mathbf{n}}{\|\psi \mathbf{n}\|}
\end{aligned}
$$

Machine Learning

Input Image

Superpixels

EPFLTrain a regressor to predict depth —> Noisy predictions

Markov Random Field (MRF)

Graph with vertices and edges

Assign values to the nodes to minimize

$$
E(Y)=\sum_{i} \varphi\left(y_{i}\right)+\sum_{(i, j)} \psi\left(y_{i}, y_{j}\right)
$$

Deep Learning with MRF

Enforcing Task Consistency Depth

- A network can be trained to predict multiple things.
- Forcing consistency across tasks increases robustness.

A Very Diverse Training Database Helps

EPFL
Eftekhar et al., ICCV'21 vs Chen et al. , CVPR'20

.. and so does a Transformer Architecture

Using Transformers

- Pros: Good at modeling long range relationships.
- Cons: Flattening the patches looses some amount of information. EPFL

Ranftl et al., CVPR'21

Optional: Illusory Shape Distorsion

People seem to be sensitive to orientation fields in the cases of both texture and shading.

Optional: Shape from Smear

Hypothesis: If orientation and scale fields are the key source of information for 3D shape perception, it should be possible to induce a vivid sense of 3D shape by creating 2D patterns with appropriate scale and orientation fields.

Test: Use a technique known as Line Integral Convolution to smear the texture along specific orientations and scale appropriately.

Optional: Scaling and Smearing

Scaling:

Optional: Inconsistent Stimulus

The orientation field cannot be integrated $>$ No depth perception.
$>$ Do we integrate in our heads?
$>$ Is this what the deep nets learn to do?

Strengths and Limitations

Strengths:

- Emulates an important human ability.

Limitations:

- Requires regular texture.
- Involves very strong assumptions.
- Deep learning can be used to weaken them.

