This course focuses on the biophysical mechanisms of mammalian brain function. We will describe how neurons communicate through synaptic transmission in order to process sensory information ultimately leading to motor behavior.

The brain processes information through the concerted activity of many neurons, which communicate with each other through synapses organised in highly dynamic networks. The first goal of this course is to gain a detailed understanding of the structure and function of the fundamental building blocks of the brain, its synapses and neurons. In considering this goal, we will also examine some basic methods including cellular electrophysiology and optical imaging. This will enable the student to critically evaluate how neurons are studied. The second goal is to learn how synaptic input is integrated and processed in single neurons based on the active and passive properties of axons and dendrites. Students will assemble their knowledge of synapses and neurons into a coherent picture of neuronal network function, with specific emphasis on the interactions of excitatory glutamatergic and inhibitory GABAergic neurons, plasticity and neuromodulation. The third goal, will be to place neuronal networks in the context of how they contribute to associative learning and sensory processing ultimately leading to behavioural decisions and motor output. These topics will be examined during Week 9 of the semester in a written exam.

In the second part of the semester, students will carry out a miniproject analysing a neurophysiological dataset. Each student must submit their miniproject report by the last Friday of the semester.